Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bijun Xie is active.

Publication


Featured researches published by Bijun Xie.


Food Chemistry | 2013

Oligomeric procyanidins of lotus seedpod inhibits the formation of advanced glycation end-products by scavenging reactive carbonyls.

Qian Wu; Hengye Chen; Zhejuan Lv; Shuyi Li; Bei Hu; Yafei Guan; Bijun Xie; Zhida Sun

It has been reported that oligomeric procyanidins of lotus seedpod (LSOPC) is effective in the alleviation of Alzheimers disease and diabetes through its antioxidant and insulin-potentiating activities. This study investigated the anti-glycative activity of LSOPC in a bovine serum albumin (BSA)-glucose model. The level of glycation and conformational alterations were assessed by specific fluorescence, Congo red binding assay and circular dichroism. The results show that LSOPC has a significant anti-glycative activity in vitro and it can also effectively protect the secondary structure of BSA during glycation. LSOPC or catechin (a major constituent unit of LSOPC), were used to react with methylglyoxal. The structures of their carbonyl adducts were tentatively identified using HPLC-MS(2). Their capacity to scavenge methylglyoxal suggested carbonyl scavenging as a major mechanism of antiglycation. Therefore, LSOPC could be helpful to prevent AGEs-associated diseases, and with the potential to be used as functional food ingredients.


Journal of Agricultural and Food Chemistry | 2008

Rapid preparation of procyanidins B2 and C1 from Granny Smith apples by using low pressure column chromatography and identification of their oligomeric procyanidins.

Junsong Xiao; Liang Liu; Hua Wu; Bijun Xie; Erning Yang; Zhida Sun

Research in the field of procyanidins is always hindered by the lack of procyanidin standards, and the preparation of procyanidins, especially in large scale, remains difficult and time-consuming. Commercial sources of procyanidin standards are scarce. In this study, a rapid preparation method of procyanidins by using low-pressure column chromatography was developed. Procyanidins in Granny Smith apples were extracted with boiled water and purified on an ADS-17 macroporous resin column to obtain a Granny Smith apple procyanidin extract (GSE). GSE was fractionated according to its degree of polymerization on a Toyopearl TSK HW-40s column. Procyanidins B2 (epicatechin-(4beta-8)-epicatechin) and C1 (epicatechin-(4beta-8)-epicatechin-(4beta-8)-epicatechin) were prepared without HPLC separation. Oligomeric procyanidins from Granny Smith apples were also identified by liquid chromatography-electrospray ionization-mass spectrometry.


Journal of Agricultural and Food Chemistry | 2013

Increasing Antioxidant Activity of Procyanidin Extracts from the Pericarp of Litchi chinensis Processing Waste by Two Probiotic Bacteria Bioconversions

Shuyi Li; Lu Chen; Ting Yang; Qian Wu; Zhejuan Lv; Bijun Xie; Zhida Sun

Litchi chinensis pericarp from litchi processing waste is an important plant source of A-type procyanidins, which were considered a natural dietary supplement because of their high biological activity in vivo. Litchi pericarp oligomeric procyanidins (LPOPCs) did not selectively modify the growth of Streptococcus thermophilus and Lactobacillus casei -01 at concentrations of 0.25 and 0.5 mg/mL, and it was demonstrated that the two strains could transform procyanidins during their log period of growth by two different pathways. S. thermophilus was able to metabolize procyanidin A2 to its isomer, and L. casei could decompose flavan-3-ols into 3,4-hydroxyphenylacetic acid, 4-hydroxyphenylpropionic acid, m-coumaric acid, and p-coumaric acid. The total antioxidant capability (T-AOC) of LPOPCs before and after microbial incubation was estimated, and the results suggested that probiotic bacteria bioconversion is a feasible and efficient method to convert litchi pericarp procyanidins to a more effective antioxidant agent.


Journal of Agricultural and Food Chemistry | 2012

Characterization of Oligomeric Procyanidins and Identification of Quercetin Glucuronide from Lotus (Nelumbo nucifera Gaertn.) Seedpod

Junsong Xiao; Bijun Xie; Yan-Ping Cao; Hua Wu; Zhida Sun; Di Xiao

Procyanidins are a class of polyphenols in the plant kingdom. Lotus ( Nelumbo nucifera Gaertn.) seedpods, the inedible part of lotus and a byproduct during the production of lotus seeds, were found to be a new source rich in procyanidins. Detailed information about oligomeric procyanidins in lotus seedpods remains unknown. In this study, lotus seedpods were extracted using 60% aqueous methanol and characterized with phloroglucinolysis and liquid chromatography (mass spectrometry with an electrospray ionization source). The results indicate that the oligomeric and polymeric fraction had a mean degree of polymerization of 3.2 and 15.4, respectively, and consisted of (+)-catechin (m/z 289), gallocatechin or epigallocatechin (m/z 305), quercetin glycoside (m/z 463), quercetin glucuronide (m/z 477), procyanidin dimers (m/z 577.1), proanthocyanidin dimer gallate (m/z 593.3), prodelphinidin dimers (m/z 609.1), procyanidin trimers (m/z 865.1), etc. Quercetin glucuronide was further purified using flash chromatography and identified as quercetin-3-O-β-glucuronide by determining its exact mass using ion-trap time-of-flight mass spectrometry and ¹H and ¹³C nuclear magnetic resonance, ¹H-detected heteronuclear single-quantum coherence, and ¹H-detected heteronuclear multiple-bond correlation analyses.


Food Chemistry | 2013

Absorption and urinary excretion of A-type procyanidin oligomers from Litchi chinensis pericarp in rats by selected ion monitoring liquid chromatography-mass spectrometry.

Shuyi Li; Yong Sui; Juan Xiao; Qian Wu; Bei Hu; Bijun Xie; Zhida Sun

Intervention studies with A-type oligomeric procyanidins from litchi (Litchi chinensis) pericarp (LPOPC) suggested its protective effect against cardiovascular diseases. However, there is no consensus on the absorption and metabolism of LPOPC. It was demonstrated that the main components in LPOPC were (-)-epicatechin, A-type procyanidin dimers, trimers and tetramers. Rats were orally administered different levels of LPOPC (150 and 300 mg/kgbw), the procyanidins and their microbial metabolites in urine were identified by HPLC-MS/MS analysis 18 h post-administration. Data indicated that seven aromatic acid metabolites excreted were significantly increased by 300 mg/kgbw of LPOPC (P<0.01). However, only (-)-epicatechin and its methylated derivatives were detected in rat plasma 1h after 300 mg/kgbw of LPOPC administration. The total EC content absorbed in plasma was only 2.54 ± 0.53 μmol/L, indicating that the biological properties of LPOPC should be probably explained by its microbial degraded phenolic acids.


Journal of Agricultural and Food Chemistry | 2015

Inhibition of Advanced Glycation Endproduct Formation by Lotus Seedpod Oligomeric Procyanidins through RAGE-MAPK Signaling and NF-κB Activation in High-Fat-Diet Rats.

Qian Wu; Shuyi Li; Xiaopeng Li; Yong Sui; Yan Yang; Lihong Dong; Bijun Xie; Zhida Sun

This study investigated the protective properties of lotus seedpod oligomeric procyanidins (LSOPC) against nonalcoholic fatty liver disease (NAFLD) and its underlying mechanism. Sprague-Dawley (SD) male rats were fed a basic diet, a high-fat diet (HFD), or HFD plus 0.2 or 0.5% (w/w) LSOPC for 12 weeks. Administration of LSOPC markedly reduced serum and hepatic biochemical parameters and protein expression of advanced glycation endproducts (AGEs). Additionally, 0.5% (w/w) LSOPC treatment remarkably reversed the increasing tendency of receptor of advanced glycation endproduct (RAGE) to normal level. Furthermore, dietary LSOPC significantly decreased the protein levels of mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) and down-regulated genes involved in pro-inflammatory cytokines and adhesion molecules. Taken together, these findings demonstrate that LSOPC may protect obese rats with long-term HFD-induced NAFLD against RAGE-MAPK-NF-κB signaling suppression.


PLOS ONE | 2014

Lactobacillus casei-01 Facilitates the Ameliorative Effects of Proanthocyanidins Extracted from Lotus Seedpod on Learning and Memory Impairment in Scopolamine-Induced Amnesia Mice

Juan Xiao; Shuyi Li; Yong Sui; Qian Wu; Xiaopeng Li; Bijun Xie; Mingwei Zhang; Zhida Sun

Learning and memory abilities are associated with alterations in gut function. The two-way proanthocyanidins-microbiota interaction in vivo enhances the physiological activities of proanthocyanidins and promotes the regulation of gut function. Proanthocyanidins extracted from lotus seedpod (LSPC) have shown the memory-enhancing ability. However, there has been no literature about whether Lactobacillus casei-01 (LC) enhances the ameliorative effects of LSPC on learning and memory abilities. In this study, learning and memory abilities of scopolamine-induced amnesia mice were evaluated by Y-maze test after 20-day administration of LC (109 cfu/kg body weight (BW)), LSPC (low dose was 60 mg/kg BW (L-LSPC) and high dose was 90 mg/kg BW (H-LSPC)), or LSPC and LC combinations (L-LSPC+LC and H-LSPC+LC). Alterations in antioxidant defense ability and oxidative damage of brain, serum and colon, and brain cholinergic system were investigated as the possible mechanisms. As a result, the error times of H-LSPC+LC group were reduced by 41.59% and 68.75% relative to those of H-LSPC and LC groups respectively. LSPC and LC combinations ameliorated scopolamine-induced memory impairment by improving total antioxidant capacity (TAOC) level, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) activities of brain, serum and colon, suppressing malondialdehyde (MDA) level of brain, serum and colon, and inhibiting brain acetylcholinesterase (AchE), myeloperoxidase, total nitric oxide synthase and neural nitric oxide synthase (nNOS) activities, and nNOS mRNA level. Moreover, LC facilitated the ameliorative effects of H-LSPC on GSH-Px activity of colon, TAOC level, GSH-Px activity and ratio of T-SOD to MDA of brain and serum, and the inhibitory effects of H-LSPC on serum MDA level, brain nNOS mRNA level and AchE activity. These results indicated that LC promoted the memory-enhancing effect of LSPC in scopolamine-induced amnesia mice.


Food and Chemical Toxicology | 2010

Whole body radioprotective activity of an acetone–water extract from the seedpod of Nelumbo nucifera Gaertn. seedpod

Yuqing Duan; Haihui Zhang; Bijun Xie; Yongsheng Yan; J. Li; Feifei Xu; Yu Qin

Procyanidins extracted with acetone-water from lotus (Nelumbo nucifera Gaertn.) seedpod (LSPCs) were evaluated for in vivo radioprotective activity against whole body gamma irradiation in Swiss albino mice. Pretreated with LSPCs 200 mg/kg by intragastric (i.g.) for 15 days was found to be the most effective dose in preventing radiation sickness, reducing radiation-induced mortality, increasing mean survival time and elevating radiation median lethal dose (LD(50)) from 8.9 to 10.5 Gy, indicating a dose modifying factor (DMF) of 1.18. Further, administered LSPCs at a dose of 200 mg/kg could effectively maintain spleen index close to normal, stimulate endogenous spleen colony forming units, promote the levels of red blood cells (RBC), white blood cells (WBC), platelets and hemoglobin in peripheral blood, and prevent spleen and skin damage in irradiated mice, reduce the level of radiation-induced micronucleated polychromatic erythrocytes in bone marrow, maintain the polychromatic erythrocytes (PCE) and normochromatic erythrocytes (NCE) ratio (P/N ratio) and significantly decrease bone marrow chromosomal damage. Alternatively, pretreated with LSPCs (200 mg/kg) significantly decreased the lipid peroxidation (LPO) level, and elevated the activities of endogenous antioxidant enzymes in liver after irradiation. Thus LSPCs possess a strong whole body radioprotective activity, and it may be used as a radioprotector.


Journal of Agricultural and Food Chemistry | 2008

Interactions between Oat β-Glucan and Calcofluor Characterized by Spectroscopic Method

Jia Wu; Xiao Deng; Binqiang Tian; Lan Wang; Bijun Xie

This paper describes the binding of Calcofluor, a fluorescent probe, to oat beta-glucan in buffer solutions. The binding equilibrium constant (K), the total number of binding sites per beta-glucan molecule (N), and the average binding number of Calcofluor per beta-glucan molecule (n) were determined by UV spectroscopic method. The results indicate that the association of Calcofluor and beta-glucan is driven by both enthalpy and entropy and that the process involves hydrogen bonding, van der Waals forces, and hydrophobic interaction. Higher buffer concentration and NaCl facilitate the binding of Calcofluor to beta-glucan. The adsorption isotherm fits a Langmuir model quite well.


Fitoterapia | 2016

Characterization and preparation of oligomeric procyanidins from Litchi chinensis pericarp

Yong Sui; Yan zheng; Xiaopeng Li; Shuyi Li; Bijun Xie; Zhida Sun

The main purpose of this study is to characterize and prepare A-type oligomeric procyanidins from litchi pericarp (Litchi chinensis Baila). The variety of oligomeric procyanidins was characterized by LC-ESI-MS analysis. There were (+)-catechin, (-)-epicatechin, twelve dimers and six trimers of procyanidins were found in litchi pericarp extracts, and A-type procyanidins were much more abundant than B-type procyanidins. The main flavan-3-ol monomer and oligomeric procyanidins in litchi pericarp were (-)-epicatechin, A-type dimers (A1 and A2) and trimer (epicatechin-(4β-8, 2β-O-7)-epicatechin- (4β-8)-epicatechin). Procyanidin A1 (epicatechin-(4β-8, 2β-O-7)-catechin) was identified by NMR in litchi pericarp for the first time. (-)-Epicatechin and oligomeric procyanidins were prepared by the combination of AB-8 column chromatography and Toyopearl HW-40S column chromatography. The results showed that each fraction predominantly owned a single compound and gave a high yield with (-)-epicatechin, A-type dimers (A1 and A2) and trimer, suggesting a useful method to obtain pure (-)-epicatechin and A-type oligomeric procyanidins.

Collaboration


Dive into the Bijun Xie's collaboration.

Top Co-Authors

Avatar

Zhida Sun

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shuyi Li

Wuhan Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Qian Wu

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Yong Sui

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaopeng Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Zhang

Tianjin University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yashu Chen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lan Wang

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge