Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Biljana Georgievska is active.

Publication


Featured researches published by Biljana Georgievska.


Brain Research | 2000

Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model

Anders Björklund; Deniz Kirik; Carl Rosenblad; Biljana Georgievska; Cecilia Lundberg; Ronald J. Mandel

During the last few years, recombinant viral vectors derived from adenovirus (Ad), adeno-associated virus (AAV) or lentivirus (LV) have been developed into highly effective vehicles for gene transfer to the adult central nervous system. In recent experiments, in the rat model of Parkinsons disease, all three vector systems have been shown to be effective for long-term delivery of glial cell line-derived neurotrophic factor (GDNF) at biologically relevant levels in the nigrostriatal system. Injection of the GDNF encoding vectors into either striatum or substantia nigra thus makes it possible to obtain a regionally restricted over-expression of GDNF within the nigrostriatal system that is sufficient to block the toxin-induced degeneration of the nigral dopamine neurons. Injection of GDNF vectors in the striatum, in particular, is effective not only in rescuing the cell bodies in the substantia nigra, but also in preserving the nigrostriatal projection and a functional striatal dopamine innervation in the rat Parkinson model. Long-term experiments using AAV-GDNF and LV-GDNF vectors show, moreover, that sustained GDNF delivery over 3-6 months can promote regeneration and significant functional recovery in both 6-OHDA-lesioned rats and MPTP-lesioned monkeys. The impressive efficacy of the novel AAV and LV vectors in rodent and primate Parkinson models suggests that the time may now be ripe to explore these vector systems as tools for neuroprotective treatments in patients with Parkinsons disease.


Nature Neuroscience | 2004

Localized striatal delivery of GDNF as a treatment for Parkinson disease

Deniz Kirik; Biljana Georgievska; Anders Björklund

Te n years ago, a glial cell line‐derived neurotrophic factor (GDNF) that has prominent actions on nigral dopaminergic neurons, both in vitro and in animal models of Parkinson disease (PD), was discovered. A recently published open-label clinical trial now reports that long-term intracerebral delivery of GDNF may also markedly improve symptoms in patients with PD. Here we review the experimental data underlying the current clinical trial and discuss the types of structural and functional changes induced by GDNF that may provide symptomatic benefit in PD patients. Data obtained in rodent and primate models of PD highlight the importance of how and where the factor is administered, supporting the view that GDNF has to be delivered locally in the brain parenchyma, at the receptive target site, to provide therapeutic benefit in PD patients. The cardinal symptoms of PD, including a difficulty in initiating movement, slowness of movement and stiffness and shaking at rest, are to a large extent caused by the progressive degeneration of the dopamine-producing neurons in the substantia nigra. Nigral cell loss proceeds over many years, during the early symptomatic stage, during manifest PD and during severe, end-stage disease. At the onset of disease, about 50% of dopaminergic neurons have been lost, and there is on average a further loss of 45% within the first decade, accompanied by a profound striatal dopaminergic denervation. It is this slow and protracted degenerative process that creates opportunities for disease intervention, such as blocking nigral cell loss and promoting recovery by improved function—and possibly by inducing regeneration and sprouting—of the surviving nigral dopaminergic neurons. Results obtained in animal models of PD indicate that GDNF may possess the desired properties to be used as a disease-modifying therapeutic factor for PD. Neurotrophic factors, by virtue of their neuroprotective properties, have attracted considerable interest as potential therapeutic agents in neurodegenerative diseases. Attempts to apply these factors clinically, however, have so far been disappointing because of their poor efficacy and induction of troublesome side effects. In these clinical trials, the recombinant protein was delivered either systemically or into the cerebrospinal fluid (intraventricularly or intrathecally) in patients suffering from amyotrophic lateral sclerosis, peripheral neuropathy, PD or Alzheimer disease 1,2 .R esults from these studies indicate that the neurotrophic factors, whose receptors are widely distributed, are prone to inducing pronounced side effects when delivered by these routes. The poor penetration across the blood‐brain barrier, as well as the limited passage of proteins from the cerebrospinal fluid into the brain tissue, has made it necessary to administer the factors at doses that are likely to induce side effects. These effects may not be so evident in small-sized experimental animals. For this reason, they may have gone unnoticed in the preclinical studies and may have become apparent in some cases only at the phase II/III stage of the clinical trails when larger numbers of patients were included. The therapeutic value of neurotrophic-factor delivery, therefore, may not be possible to achieve unless the factors are delivered locally at the receptive target sites within the central nervous system. Steven Gill and collaborators 3 have, for the first time, tested this mode of delivery in patients with advanced PD using continuous intracerebral infusion of GDNF. Although quite promising, the results of this initial open-label trial should be interpreted cautiously because the study was based on a small number of patients who were monitored over a relatively short follow-up period. Nevertheless, the data reported indicate that pronounced clinical benefit, in the absence of any serious side effects, may be possible to obtain by GDNF using intrastriatal delivery. Neuroprotective effects of GDNF in animal models of PD


The Journal of Neuroscience | 2005

Continuous Low-Level Glial Cell Line-Derived Neurotrophic Factor Delivery Using Recombinant Adeno-Associated Viral Vectors Provides Neuroprotection and Induces Behavioral Recovery in a Primate Model of Parkinson's Disease

Andisheh Eslamboli; Biljana Georgievska; R.M. Ridley; H. F. Baker; Nicholas Muzyczka; Corinna Burger; Ronald J. Mandel; L. E. Annett; Deniz Kirik

The therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) for Parkinsons disease is likely to depend on sustained delivery of the appropriate amount to the target areas. Recombinant adeno-associated viral vectors (rAAVs) expressing GDNF may be a suitable delivery system for this purpose. The aim of this study was to define a sustained level of GDNF that does not affect the function of the normal dopamine (DA) neurons but does provide anatomical and behavioral protection against an intrastriatal 6-hydroxydopamine (6-OHDA) lesion in the common marmoset. We found that unilateral intrastriatal injection of rAAV resulting in the expression of high levels of GDNF (14 ng/mg of tissue) in the striatum induced a substantial bilateral increase in tyrosine hydroxylase protein levels and activity as well as in DA turnover. Expression of low levels of GDNF (0.04 ng/mg of tissue), on the other hand, produced only minimal effects on DA synthesis and only on the injected side. In addition, the low level of GDNF provided ∼85% protection of the nigral DA neurons and their projections to the striatum in the 6-OHDA-lesioned hemisphere. Furthermore, the anatomical protection was accompanied by a complete attenuation of sensorimotor neglect, head position bias, and amphetamine-induced rotation. We conclude that when delivered continuously, a low level of GDNF in the striatum (approximately threefold above baseline) is sufficient to provide optimal functional outcome.


Experimental Neurology | 2002

Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer.

Biljana Georgievska; Deniz Kirik; Anders Björklund

The effects of sustained (up to 9 months) striatal overexpression of glial cell line derived neurotrophic factor (GDNF) on lesioned nigrostriatal dopamine (DA) neurons was studied using a recombinant lentiviral (rLV) vector to deliver GDNF into the striatum 4 weeks prior to the creation of an intrastriatal 6-hydroxydopamine lesion. The results of the amphetamine-induced rotation suggested an initial partial protection followed by a complete recovery, whereas the spontaneous motor behaviors remained impaired. There was a clear protection of the nigral tyrosine hydroxylase (TH)-positive neurons in the rLV-GDNF group compared to rats injected with the control vector encoding green fluorescent protein (GFP) (70 and 20% of the intact side, respectively). However, the striatal TH+ fiber density was equally reduced (to 20% of the intact side) in both groups. Further morphological analyses indicated that the nigrostriatal projections of the DA neurons were indeed preserved in the GDNF group. The axonal projections were visualized using two independent methods: First, retrograde labeling of the nigral cell bodies by intrastriatal Fluoro-Gold injections showed that the majority of rescued cells in the GDNF group had preserved axonal projections to striatum. Second, injections of a recombinant adeno-associated viral vector expressing GFP into the nigra was used to anterogradely fill the DA neurons and their projections with GFP protein. GFP immunostaining clearly demonstrated that the fibers of the nigral DA cells were preserved along the nigrostriatal pathway and innervated large parts of the striatum, but did not express TH at detectable levels. In addition, fiber sprouting was observed in the globus pallidus, entopeduncular nucleus, and substantia nigra, corresponding to areas where GDNF protein was released. The lack of functional recovery in the spontaneous motor behaviors may, at least in part, be explained by this extensive aberrant fiber sprouting in the downstream striatal target nuclei and/or decreased synthesis of dopamine in the striatum.


The Journal of Neuroscience | 2004

Overexpression of Glial Cell Line-Derived Neurotrophic Factor Using a Lentiviral Vector Induces Time- and Dose-Dependent Downregulation of Tyrosine Hydroxylase in the Intact Nigrostriatal Dopamine System

Biljana Georgievska; Deniz Kirik; Anders Björklund

The effects of continuous glial cell line-derived neurotrophic factor (GDNF) overexpression in the intact nigrostriatal dopamine (DA) system was studied using recombinant lentiviral (rLV) vector delivery of GDNF to the striatum or substantia nigra (SN) in the rat. Intrastriatal delivery of rLV-GDNF resulted in significant overexpression of GDNF in the striatum (2-4 ng/mg tissue) and anterograde transport of GDNF protein to the SN. Striatal rLV-GDNF delivery initially induced an increase in DA turnover (1-6 weeks), accompanied by significant contralateral turning in response to amphetamine, suggesting an enhancement of the DA system on the injected side. Starting 6 weeks after continuous GDNF delivery, we observed a selective downregulation of tyrosine hydroxylase (TH) protein (≈70%) that was maintained until the end of the experiment (24 weeks). A similar effect was observed when rLV-GDNF was injected into the SN. The magnitude of TH downregulation was related to the level of GDNF expression and was most pronounced in animals in which the striatal GDNF level exceeded 0.7 ng/mg tissue. The decreased TH protein levels were associated with similar reductions in the in vitro TH enzyme activity (≈70%); however, in vivo l-3,4-dihydroxyphenylalanine production rate and DA tissue levels were maintained at normal levels. The results indicate that downregulation of TH protein reflects a compensatory effect in response to continuous GDNF stimulation of the DA neurons mediated by a combination of overactivity at the DA synapse and a direct GDNF-induced action on TH gene expression. This compensatory mechanism is proposed to maintain long-term DA neuron function within the normal range.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of l-dopa using rAAV-mediated gene transfer

Deniz Kirik; Biljana Georgievska; Corinna Burger; Christian Winkler; Nicholas Muzyczka; Ronald J. Mandel; Anders Björklund

Intrastriatal delivery of the tyrosine hydroxylase gene by viral vectors is being explored as a tool for local delivery of l-dopa in animals with lesions of the nigrostriatal pathway. The functional effects reported using this approach have been disappointing, probably because the striatal l-dopa levels attained have been too low. In the present study, we have defined a critical threshold level of l-dopa, 1.5 pmol/mg of tissue, that has to be reached to induce any significant functional effects. Using new generation high-titer recombinant adeno-associated virus vectors, we show that levels of striatal l-dopa production exceeding this threshold can be obtained provided that tyrosine hydroxylase is coexpressed with the cofactor synthetic enzyme, GTP-cyclohydrolase-1. After striatal transduction with this combination of vectors, substantial functional improvement in both drug-induced and spontaneous behavior was observed in rats with either complete or partial 6hydroxydopamine lesions of the nigrostriatal pathway. However, complete reversal of motor deficits occurred only in animals in which part of the striatal dopamine innervation was left intact. Spared nigrostriatal fibers thus may convert l-dopa to dopamine and store and release dopamine in a more physiologically relevant manner in the denervated striatum to mediate better striatal output-dependent motor function. We conclude that intrastriatal l-dopa delivery may be a viable strategy for treatment and control of adverse side effects associated with oral l-dopa therapy such as on-off fluctuations and drug-induced dyskinesias in patients with Parkinsons disease.


European Journal of Neuroscience | 2001

Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson's disease

Deniz Kirik; Biljana Georgievska; Carl Rosenblad; Anders Björklund

Here we studied the effects of glial cell line‐derived neurotrophic factor (GDNF) in a rat model that represents the symptomatic stages of Parkinsons disease. GDNF was infused starting 2 weeks after an intrastriatal 6‐hydroxydopamine (6‐OHDA) lesion in order to halt the ongoing degeneration of the nigrostriatal dopaminergic neurons. GDNF or vehicle was infused in the striatum or the lateral ventricle via an osmotic minipump over a total 4‐week period (2–6 weeks postlesion). Motor function was evaluated by the stepping, paw reaching and drug‐induced motor asymmetry tests before the pump infusion was initiated, and was repeated once during (5 weeks postlesion) and twice after the withdrawal of the minipumps (7 and 11 weeks postlesion). We found that within two weeks following the lesion ≈ 40% of the nigral TH‐positive neurons were lost. In the vehicle infusion groups there was an additional 20% cell loss between 2 and 12 weeks after the lesion. This latter cell loss occurred mainly in the caudal part of the SN whereas the cell loss in the rostral SN was almost complete within the first two weeks. Ventricular GDNF infusion completely blocked the late degenerating neurons in the caudal SN and had long lasting behavioural effects on the stepping test and amphetamine rotation, extending to 6 weeks after withdrawal of the factor. Striatal infusion affected the motor behaviour transiently during the infusion period but the motor performance of these animals returned to baseline upon cessation of the GDNF delivery, and the delayed nigral cell loss was marginally affected. We conclude that intraventricular GDNF can successfully block the already initiated degenerative process in the substantia nigra, and that the effects achieved via the striatal route, when GDNF is given acutely after the lesion, diminish as the fibre terminal degeneration proceeds.


Neuroreport | 2002

Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector.

Biljana Georgievska; Deniz Kirik; Carl Rosenblad; Cecilia Lundberg; Anders Björklund

We used a recombinant lentiviral vector (rLV) for gene delivery of GDNF to the striatum, and assessed its neuroprotective effects in the intrastriatal 6-hydroxydopamine (6-OHDA) lesion model. The level of GDNF expression obtained with the rLV-GDNF vector was dose-related and ranged between 0.9–9.3 ng/mg tissue in the transduced striatum, as determined by ELISA, and 0.2–3.0 ng/mg tissue were detected in the ipsilateral substantia nigra (SN), due to anterograde transport of the GDNF protein. GDNF expression was apparent at 4 days and maintained for ≥ 8 months after injection. Striatal delivery of rLV-GDNF efficiently protected the nigral dopamine (DA) neurons and their projection, against the 6-OHDA lesion (65–77% of intact side). Sprouting of the lesioned axons was observed along the nigrostriatal pathway, precisely corresponding to the areas containing anterogradely transported GDNF.


European Journal of Neuroscience | 2003

Long-term striatal overexpression of GDNF selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system.

Carl Rosenblad; Biljana Georgievska; Deniz Kirik

Sustained neurotrophic factor treatment in neurodegenerative disorders such as Parkinsons disease is likely to affect both degenerating and intact neurons. To investigate the effect of long‐term glial cell line‐derived neurotrophic factor (GDNF) overexpression on intact nigrostriatal dopamine neurons, we injected a recombinant lentiviral vector encoding GDNF, or green fluorescent protein, in the right striatum of young adult rats. Thirteen months after viral injection GDNF levels were 4.5 ng/mg tissue in the striatum and 0.9 ng/mg in the substantia nigra as measured by ELISA, representing a 25–100‐fold increase above control vector‐ or nontransduced tissue. GDNF overexpression significantly reduced tyrosine hydroxylase mRNA levels (by 39–72%) in the substantia nigra and ventral tegmental area neurons, and the optical density of tyrosine hydroxylase‐immunoreactive innervation in the striatum was reduced by 25–52% with the most prominent reductions appearing caudally. No significant reduction was seen in striatal vesicular monoamine transporter 2‐immunoreactivity or [3H]mazindole binding autoradiography to dopamine uptake sites, two other presynaptic markers in dopamine axon terminals. The striatal D1 and D2 receptor binding as determined by [3H]SCH23390 and [3H]spiperone binding, respectively, was unaltered relative to the intact side in both treatment groups. Preproenkephalin mRNA levels in postsynaptic striatal neurons, which increase upon removal of striatal dopamine, were also unaffected by the GDNF treatment. Taken together our findings indicate that sustained GDNF administration to intact nigrostriatal dopamine neurons selectively reduces tyrosine hydroxylase expression, without altering striatal dopamine transmission to the extent that compensatory changes in several other components related to dopamine storage and signalling occur.


Brain | 2011

GDNF fails to exert neuroprotection in a rat {alpha}-synuclein model of Parkinson's disease.

Mickael Decressac; Ayse Ulusoy; Bengt Mattsson; Biljana Georgievska; Marina Romero-Ramos; Deniz Kirik; Anders Björklund

The neuroprotective effect of the glial cell line-derived neurotrophic factor has been extensively studied in various toxic models of Parkinsons disease. However, it remains unclear whether this neurotrophic factor can protect against the toxicity induced by the aggregation-prone protein α-synuclein. Targeted overexpression of human wild-type α-synuclein in the nigrostriatal system, using adeno-associated viral vectors, causes a progressive degeneration of the nigral dopamine neurons and the development of axonal pathology in the striatum. In the present study, we investigated, using different paradigms of delivery, whether glial cell line-derived neurotrophic factor can protect against the neurodegenerative changes and the cellular stress induced by α-synuclein. We found that viral vector-mediated delivery of glial cell line-derived neurotrophic factor into substantia nigra and/or striatum, administered 2-3 weeks before α-synuclein, was inefficient in preventing the wild-type α-synuclein-induced loss of dopamine neurons and terminals. In addition, glial cell line-derived neurotrophic factor overexpression did not ameliorate the behavioural deficit in this rat model of Parkinsons disease. Quantification of striatal α-synuclein-positive aggregates revealed that glial cell line-derived neurotrophic factor had no effect on α-synuclein aggregation. These data provide the evidence for the lack of neuroprotective effect of glial cell line-derived neurotrophic factor against the toxicity of human wild-type α-synuclein in an in vivo model of Parkinsons disease. The difference in neuroprotective efficacy of glial cell line-derived neurotrophic factor seen in our model and the commonly used neurotoxin models of Parkinsons disease, raises important issues pertinent to the interpretation of the results obtained in preclinical models of Parkinsons disease, and their relevance for the therapeutic use glial cell line-derived neurotrophic factor in patients with Parkinsons disease.

Collaboration


Dive into the Biljana Georgievska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge