Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia Lundberg is active.

Publication


Featured researches published by Cecilia Lundberg.


The Journal of Neuroscience | 2002

Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system.

Deniz Kirik; Carl Rosenblad; Corinna Burger; Cecilia Lundberg; Teit E. Johansen; Nicholas Muzyczka; Ronald J. Mandel; Anders Björklund

Recombinant adeno-associated viral vectors display efficient tropism for transduction of the dopamine neurons of the substantia nigra. Taking advantage of this unique property of recombinant adeno-associated viral vectors, we expressed wild-type and A53T mutated human α-synuclein in the nigrostriatal dopamine neurons of adult rats for up to 6 months. Cellular and axonal pathology, including α-synuclein-positive cytoplasmic inclusions and swollen, dystrophic neurites similar to those seen in brains from patients with Parkinsons disease, developed progressively over time. These pathological alterations occurred preferentially in the nigral dopamine neurons and were not observed in other nondopaminergic neurons transduced by the same vectors. The degenerative changes were accompanied by a loss of 30–80% of the nigral dopamine neurons, a 40–50% reduction of striatal dopamine, and tyrosine hydroxylase levels that was fully developed by 8 weeks. Significant motor impairment developed in those animals in which dopamine neuron cell loss exceeded a critical threshold of 50–60%. At 6 months, signs of cell body and axonal pathology had subsided, suggesting that the surviving neurons had recovered from the initial insult, despite the fact that α-synuclein expression was maintained at a high level. These results show that nigral dopamine neurons are selectively vulnerable to high levels of either wild-type or mutant α-synuclein, pointing to a key role for α-synuclein in the pathogenesis of Parkinsons disease. Targeted overexpression of α-synuclein in the nigrostriatal system may provide a new animal model of Parkinsons disease that reproduces some of the cardinal pathological, neurochemical, and behavioral features of the human disease.


Brain Research | 2000

Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model

Anders Björklund; Deniz Kirik; Carl Rosenblad; Biljana Georgievska; Cecilia Lundberg; Ronald J. Mandel

During the last few years, recombinant viral vectors derived from adenovirus (Ad), adeno-associated virus (AAV) or lentivirus (LV) have been developed into highly effective vehicles for gene transfer to the adult central nervous system. In recent experiments, in the rat model of Parkinsons disease, all three vector systems have been shown to be effective for long-term delivery of glial cell line-derived neurotrophic factor (GDNF) at biologically relevant levels in the nigrostriatal system. Injection of the GDNF encoding vectors into either striatum or substantia nigra thus makes it possible to obtain a regionally restricted over-expression of GDNF within the nigrostriatal system that is sufficient to block the toxin-induced degeneration of the nigral dopamine neurons. Injection of GDNF vectors in the striatum, in particular, is effective not only in rescuing the cell bodies in the substantia nigra, but also in preserving the nigrostriatal projection and a functional striatal dopamine innervation in the rat Parkinson model. Long-term experiments using AAV-GDNF and LV-GDNF vectors show, moreover, that sustained GDNF delivery over 3-6 months can promote regeneration and significant functional recovery in both 6-OHDA-lesioned rats and MPTP-lesioned monkeys. The impressive efficacy of the novel AAV and LV vectors in rodent and primate Parkinson models suggests that the time may now be ripe to explore these vector systems as tools for neuroprotective treatments in patients with Parkinsons disease.


Molecular and Cellular Neuroscience | 2004

Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6

Michael A. Hack; M Sugimori; Cecilia Lundberg; Masato Nakafuku; Magdalena Götz

Neurosphere cultures are widely used to propagate multipotent CNS precursors, but their differentiation into neurons or oligodendrocytes is rather poor. To elucidate fate determination in this system, we examined the expression and function of candidate transcription factors in neurospheres derived from different CNS regions during development and adulthood. We observed prominent down-regulation of most transcription factors present in telencephalic precursors upon growth factor exposure in neurosphere cultures while Olig1 and Olig2 expression was strongly up-regulated. Interference with Olig2 in neurospheres revealed its role in self-renewal during expansion and for the generation of neurons and oligodendrocytes during differentiation. We further show that neurogenesis becomes fully Pax6-dependent in the neurosphere culture system, independent of the region of origin, and that Pax6 overexpression is sufficient to direct almost all neurosphere-derived cells towards neurogenesis. Thus, a pathway combining transcription factors of dorsal and ventral regions is activated in the neurosphere culture model.


Experimental Neurology | 1997

Survival, Integration, and Differentiation of Neural Stem Cell Lines after Transplantation to the Adult Rat Striatum

Cecilia Lundberg; Alberto Martínez-Serrano; Ronald D.G. McKay; Anders Björklund

The in vivo properties of four different neural stem cell lines, generated from embryonic striatum or hippocampus by immortalization with the temperature-sensitive (s) A58/U19 allele of the SV40 Large T-antigen, have been studied with respect to their ability to survive, differentiate, and integrate after transplantation to the adult rat striatum. The cells were labeled with [3H]thymidine prior to grafting, and combined autoradiography and immunohistochemistry was used to characterize their phenotypic differentiation within the adult brain environment. The results show that all four types of cells survived well, up to at least 1.5-6 months postgrafting, without any signs of tissue perturbation or tumor formation. The cells underwent, on average, 2-3 cell divisions during the first 5 days after implantation and exhibited extensive migration over a distance of 1-1.5 mm from the injection site to become morphologically integrated with the surrounding host striatum. The cell number and tissue distribution attained by 2 weeks remained stable for up to 6 months postgrafting with the exception of one cell line, which showed a 40% loss of cells between 2 and 6 weeks. Twice the number of [3H]thymidine-labeled cells were recovered when the cells were grafted into a 1-week-old excitotoxic striatal lesion, probably due to an increased proliferation of the cells in response to the neuron-depleting depleting lesion. The immortalized cells behaved as multipotent neural progenitors. The vast majority of the cells developed a glial-like morphology, 6-14% being clearly GFAP-positive; however, a small but consistent proportion of them (1-3%) expressed MAP-2 and exhibited neuron-like morphology. In mature transplants about 75-80% of the grafted cells were located in the striatal grey matter, and 10-15% in white matter, some of which are proposed to have differentiated into oligodendrocytes. Remaining 5-10% occurred around small blood vessels (resembling pericytes) and in the subventricular zone underneath the ependyma of the lateral ventricle. It is concluded that the ts cell lines are highly suitable for intracerebral transplantation and that they allow the creation of a regionally confined cellular chimeras where the graft-derived glial cells become stably integrated with the resident glial cell matrix.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Optogenetic control of epileptiform activity

Jan Tønnesen; Andreas T. Sørensen; Karl Deisseroth; Cecilia Lundberg; Merab Kokaia

The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under the calcium/calmodulin-dependent protein kinase IIα promoter transduces principal cells of the hippocampus and cortex and hyperpolarizes these cells, preventing generation of action potentials and epileptiform activity during optical stimulation. This study proves a principle, that selective hyperpolarization of principal cortical neurons by NpHR is sufficient to curtail paroxysmal activity in transduced neurons and can inhibit stimulation train-induced bursting in hippocampal organotypic slice cultures, which represents a model tissue of pharmacoresistant epilepsy. This study demonstrates that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy.


Experimental Neurology | 2002

Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections.

Ulrica Englund; Rosemary A. Fricker-Gates; Cecilia Lundberg; Anders Björklund; Klas Wictorin

Here we examined the ability of human neural progenitors from the embryonic forebrain, expanded for up to a year in culture in the presence of growth factors, to respond to environmental signals provided by the developing rat brain. After survival times of up to more than a year after transplantation into the striatum, the hippocampus, and the subventricular zone, the cells were analyzed using human-specific antisera and the reporter gene green fluorescent protein (GFP). From grafts implanted in the striatum, the cells migrated extensively, especially within white matter structures. Neuronal differentiation was most pronounced at the striatal graft core, with axonal projections extending caudally along the internal capsule into mesencephalon. In the hippocampus, cells migrated throughout the entire hippocampal formation and into adjacent white matter tracts, with differentiation into neurons both in the dentate gyrus and in the CA1-3 regions. Directed migration along the rostral migratory stream to the olfactory bulb and differentiation into granule cells were observed after implantation into the subventricular zone. Glial differentiation occurred at all three graft sites, predominantly at the injection sites, but also among the migrating cells. A lentiviral vector was used to transduce the cells with the GFP gene prior to grafting. The reporter gene was expressed for at least 15 weeks and the distribution of the gene product throughout the entire cytoplasmic compartment of the expressing cells allowed for a detailed morphological analysis of a portion of the grafted cells. The extensive integration and differentiation of in vitro-expanded human neural progenitor cells indicate that multipotent progenitors are capable of responding in a regionally specific manner to cues present in the developing rat brain.


Molecular and Cellular Neuroscience | 2000

In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin.

Carl Rosenblad; Mette Grønborg; Claus Hansen; Nikolaj Blom; Morten Meyer; Jens Johansen; Lone Dagø; Deniz Kirik; Umesh A. Patel; Cecilia Lundberg; Didier Trono; Anders Björklund; Teit E. Johansen

The glial cell line-derived neurotrophic factor (GDNF)-family of neurotrophic factors consisted until recently of three members, GDNF, neurturin, and persephin. We describe here the cloning of a new GDNF-family member, neublastin (NBN), identical to artemin (ART), recently published (Baloh et al., 1998). Addition of NBN/ART to cultures of fetal mesencephalic dopamine (DA) neurons increased the number of surviving tyrosine hydroxylase (TH)-immunoreactive neurons by approximately 70%, similar to the maximal effect obtained with GDNF. To investigate the neuroprotective effects in vivo, lentiviral vectors carrying the cDNA for NBN/ART or GDNF were injected into the striatum and ventral midbrain. Three weeks after an intrastriatal 6-hydroxydopamine lesion only about 20% of the nigral DA neurons were left in the control group, while 80-90% of the DA neurons remained in the NBN/ART and GDNF treatment groups, and the striatal TH-immunoreactive innervation was partly spared. We conclude that NBN/ART, similarly to GDNF, is a potent neuroprotective factor for the nigrostriatal DA neurons in vivo.


Chemistry & Biology | 2010

A general chemical method to regulate protein stability in the mammalian central nervous system

Mari Iwamoto; Tomas Björklund; Cecilia Lundberg; Deniz Kirik; Thomas J. Wandless

The ability to make specific perturbations to biological molecules in a cell or organism is a central experimental strategy in modern research biology. We have developed a general technique in which the stability of a specific protein is regulated by a cell-permeable small molecule. Mutants of the Escherichia coli dihydrofolate reductase (ecDHFR) were engineered to be degraded, and, when this destabilizing domain is fused to a protein of interest, its instability is conferred to the fused protein resulting in rapid degradation of the entire fusion protein. A small-molecule ligand trimethoprim (TMP) stabilizes the destabilizing domain in a rapid, reversible, and dose-dependent manner, and protein levels in the absence of TMP are barely detectable. The ability of TMP to cross the blood-brain barrier enables the tunable regulation of proteins expressed in the mammalian central nervous system.


Journal of Neuroscience Research | 2003

Targeted transgene expression in rat brain using lentiviral vectors.

Johan Jakobsson; Cecilia Ericson; Maria Jansson; Elin Björk; Cecilia Lundberg

Direct gene transfer to the adult brain is dependent on vectors that transduce non‐dividing cells, such as lentiviral vectors. Another aspect of the development of gene therapy to the brain is the need for cell‐specific transgene expression. Expression from vesicular stomatitis virus G‐protein (VSV‐G) pseudotyped lentiviral vectors has been reported to be mainly neuron specific in the brain. We constructed cell‐specific lentiviral vectors using the neuron‐specific enolase (rNSE) or the glial fibrillary acidic protein (hGFAP) promoters and compared them to the ubiquitous human cytomegalovirus promoter (hCMV), a hybrid CMV/β‐actin promoter (CAG) and the promoter for human elongation factor 1α (EF1α). Our results showed that the hGFAP promoter was expressed only in glial cells, whereas rNSE was purely neuron specific, showing that VSV‐G is pantropic in the rat striatum. We conclude that the VSV‐G allows transduction of both glial and neuronal cells and the promoter dictates in what cell type the transgene will be expressed. The expression of transgenes exclusively in astrocytes would allow for local delivery of secreted transgene products, such as glial cell line‐derived neurotrophic factor (GDNF), circumventing the anterograde transport that may induce unwanted side effects.


Experimental Neurology | 1996

Generation of DOPA-Producing Astrocytes by Retroviral Transduction of the Human Tyrosine Hydroxylase Gene:In VitroCharacterization andin VivoEffects in the Rat Parkinson Model

Cecilia Lundberg; Philippe Horellou; Jacques Mallet; Anders Björklund

Astrocytes secreting high levels of L-3,4-dihydroxyphenylalanine (DOPA) have been generated by retrovirus-mediated transfer of the human tyrosine hydroxylase (TH) gene. Immature astrocytes obtained from prenatal rat brain were cocultured with TH virus producing psi-2 cells that had been pretreated with the mitosis inhibitor mitomycin-C. During the first week of coculture DOPA production gradually increased to reach a plateau after 7-9 days. At this time point virtually all cells were GFAP positive and over 80% of them expressed TH. DOPA production in the transduced astrocytes was largely independent of exogenous cofactor, and DOPA release into the medium was not influenced by addition of either KCl or tetrodotoxin or by removal of Ca2+ from the culture medium, indicating that the newly synthesized DOPA was constitutively released from the cells. Transplantation of the TH-transduced astrocytes to the striatum in unilaterally 6-hydroxydopamine lesioned rats reduced apomorphine-induced turning by about 50% at 2 weeks postgrafting. Microscopic analysis revealed that the transduced astrocytes survived very well after transplantation and that some of the grafted cells had migrated out, partly along blood vessels, into the surrounding striatum. TH expression was observed in cells with both the appearance of mature GFAP-positive astrocytes, as well as in more immature-looking cells. However, only a few percent of all transplanted cells maintained significant expression of the transgene, as determined by TH immuno-histochemistry. The results show that primary astrocytes may be highly useful as gene carriers for ex vivo gene therapy in the CNS. With future improvement in the gene transduction procedure for more efficient, sustained expression of the TH transgene in vivo, genetically engineered DOPA-producing astrocytes hold great promise as a tool to explore the potential of ex vivo gene therapy in Parkinsons disease.

Collaboration


Dive into the Cecilia Lundberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge