Biljana Zafirova
University of Rijeka
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Biljana Zafirova.
Science | 2011
Jessica Strid; Olga Sobolev; Biljana Zafirova; Bojan Polić; Adrian Hayday
Epidermal abrasion and T cells in the skin work together to drive the type of immune responses seen in allergy and asthma. Epithelial cells respond to physicochemical damage with up-regulation of major histocompatibility complex–like ligands that can activate the cytolytic potential of neighboring intraepithelial T cells by binding the activating receptor, NKG2D. The systemic implications of this lymphoid stress-surveillance response, however, are unknown. We found that antigens encountered at the same time as cutaneous epithelial stress induced strong primary and secondary systemic, T helper 2 (TH2)–associated atopic responses in mice. These responses required NKG2D-dependent communication between dysregulated epithelial cells and tissue-associated lymphoid cells. These data are germane to uncertainty over the afferent induction of TH2 responses and provide a molecular framework for considering atopy as an important component of the response to tissue damage and carcinogenesis.
Journal of Immunology | 2011
Katrina Soderquest; Thierry Walzer; Biljana Zafirova; Linda Klavinskis; Bojan Polić; Eric Vivier; Graham M. Lord; Alfonso Martín-Fontecha
It is uncertain whether NK cells modulate T cell memory differentiation. By using a genetic model that allows the selective depletion of NK cells, we show in this study that NK cells shape CD8+ T cell fate by killing recently activated CD8+ T cells in an NKG2D- and perforin-dependent manner. In the absence of NK cells, the differentiation of CD8+ T cells is strongly biased toward a central memory T cell phenotype. Although, on a per-cell basis, memory CD8+ T cells generated in the presence or the absence of NK cells have similar functional features and recall capabilities, NK cell deletion resulted in a significantly higher number of memory Ag-specific CD8+ T cells, leading to more effective control of tumors carrying model Ags. The enhanced memory responses induced by the transient deletion of NK cells may provide a rational basis for the design of new vaccination strategies.
Immunity | 2009
Biljana Zafirova; Sanja Mandarić; Ronald Antulov; Astrid Krmpotić; Helena Jonsson; Wayne M. Yokoyama; Stipan Jonjić; Bojan Polić
NKG2D is a potent activating receptor on natural killer (NK) cells and acts as a molecular sensor for stressed cells expressing NKG2D ligands such as infected or tumor-transformed cells. Although NKG2D is expressed on NK cell precursors, its role in NK cell development is not known. We have generated NKG2D-deficient mice by targeting the Klrk1 locus. Here we provide evidence for an important regulatory role of NKG2D in the development of NK cells. The absence of NKG2D caused faster division of NK cells, perturbation in size of some NK cell subpopulations, and their augmented sensitivity to apoptosis. As expected, Klrk1(-/-) NK cells are less responsive to tumor targets expressing NKG2D ligands. Klrk1(-/-) mice, however, showed an enhanced NK cell-mediated resistance to mouse cytomegalovirus infection as a consequence of NK cell dysregulation. Altogether, these findings provide evidence for regulatory function of NKG2D in NK cell physiology.
Cellular and Molecular Life Sciences | 2011
Biljana Zafirova; Felix M. Wensveen; Maja Gulin; Bojan Polić
NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation.
Journal of Experimental Medicine | 2010
Marina Babic; Michal Pyzik; Biljana Zafirova; Maja Mitrović; Višnja Butorac; Lewis L. Lanier; Astrid Krmpotić; Silvia M. Vidal; Stipan Jonjić
Natural killer cell recognition of “missing self” contributes meaningfully to control of mouse cytomegalovirus infection in vivo.
Nature Medicine | 2012
Andrew Zloza; Frederick J. Kohlhapp; Gretchen E. Lyons; Jason M. Schenkel; Tamson V. Moore; Andrew T. Lacek; Jeremy A. O'Sullivan; Vineeth Varanasi; Jesse W. Williams; Michael C. Jagoda; Emily Bellavance; Amanda L. Marzo; Paul G. Thomas; Biljana Zafirova; Bojan Polić; Lena Al-Harthi; Anne I. Sperling; José A. Guevara-Patiño
CD4-unhelped CD8+ T cells are functionally defective T cells primed in the absence of CD4+ T cell help. Given the co-stimulatory role of natural-killer group 2, member D protein (NKG2D) on CD8+ T cells, we investigated its ability to rescue these immunologically impotent cells. We demonstrate that augmented co-stimulation through NKG2D during priming paradoxically rescues memory, but not effector, CD8+ T cell responses. NKG2D-mediated rescue is characterized by reversal of elevated transcription factor T-box expressed in T cells (T-bet) expression and recovery of interleukin-2 and interferon-γ production and cytolytic responses. Rescue is abrogated in CD8+ T cells lacking NKG2D. Augmented co-stimulation through NKG2D confers a high rate of survival to mice lacking CD4+ T cells in a CD4-dependent influenza model and rescues HIV-specific CD8+ T cell responses from CD4-deficient HIV-positive donors. These findings demonstrate that augmented co-stimulation through NKG2D is effective in rescuing CD4-unhelped CD8+ T cells from their pathophysiological fate and may provide therapeutic benefits.
Immunity | 2012
Mary A. Markiewicz; Erica L. Wise; Zachary S. Buchwald; Amelia K. Pinto; Biljana Zafirova; Bojan Polić; Andrey S. Shaw
The mechanisms by which cytotoxic T lymphocytes (CTLs) enter and are retained in nonlymphoid tissue are not well characterized. With a transgenic mouse expressing the NKG2D ligand retinoic acid early transcript 1ε (RAE1ε) in β-islet cells of the pancreas, we found that RAE1 expression was sufficient to induce the recruitment of adoptively transferred CTLs to islets. This was dependent on NKG2D expression by the CTLs and independent of antigen recognition. Surprisingly, the recruitment of CTLs resulted in the subsequent recruitment of a large number of endogenous lymphocytes. Whereas transgenic mice did not develop diabetes, RAE1 expression was sufficient to induce insulitis in older, unmanipulated transgenic mice that was enhanced by viral infection and pancreatic inflammation. These results demonstrate that the expression of an NKG2D ligand in islets is sufficient to recruit CTLs regardless of their antigen specificity and to induce insulitis.
European Journal of Immunology | 2012
Elizabeth E. Cheney; Erica L. Wise; Jack D. Bui; Robert D. Schreiber; Leonidas N. Carayannopoulos; Dirk Spitzer; Biljana Zafirova; Bojan Polić; Andrey S. Shaw; Mary A. Markiewicz
NK‐cell killing requires both the expression of activating receptor ligands and low MHC class I expression by target cells. Here we demonstrate that the expression of any of the murine ligands for the NK‐cell activating receptor NKG2D results in a concomitant reduction in MHC class I expression. We show this both in tumor cell lines and in vivo. NK‐cell lysis is enhanced by the decrease in MHC class I expression, suggesting the change is biologically relevant. These results demonstrate that NKG2D ligand expression on target cells not only allows for activating receptor recognition, but also actively reduces expression of the inhibitory ligand, MHC class I, leading to enhanced recognition and killing by NK cells.
Journal of Immunology | 2017
Maja Lenartić; Vedrana Jelenčić; Biljana Zafirova; Mateja Ožanič; Valentina Marečić; Slaven Jurković; Veronika Sexl; Marina Šantić; Felix M. Wensveen; Bojan Polić
NKG2D is a potent activating receptor that is expressed on cytotoxic immune cells such as CD8 T and NK cells, where it promotes cytotoxicity after binding stress ligands on infected or transformed cells. On NK cell precursors NKG2D modulates proliferation and maturation. Previously, we observed that NKG2D deficiency affects peripheral B cell numbers. In this study, we show that NKG2D regulates B1a cell development and function. We find that mice deficient for NKG2D have a strong reduction of B1a cell numbers. As a result, NKG2D-deficient mice produce significantly less Ag-specific IgM Abs upon immunization with T cell–independent Ags, and they are more susceptible to Gram-negative sepsis. Klrk1−/− B1a cells are also functionally impaired and they fail to provide protection against Francisella novicida upon adoptive transfer. Using mixed bone marrow chimeric mice, we show that the impact of NKG2D deficiency on B1a cell development is cell intrinsic. No changes in homeostatic turnover and homing of B cells were detectable, limiting the effects of NKG2D to modulation of the hematopoietic development of B1a cells. Using conditional ablation, we demonstrate that the effect of NKG2D on B1a cell development occurs at a developmental stage that precedes the common lymphoid progenitor. Our findings reveal an unexpected new role for NKG2D in the regulation of B1a cell development. The protective effects of this activating receptor therefore reach beyond that of cytotoxic cells, stimulating the immune system to fight bacterial infections by promoting development of innate-like B cells.
eLife | 2018
Brian Webster; Biljana Zafirova; Sébastien This; Séverin Coléon; Elodie Décembre; Helena Païdassi; Isabelle Bouvier; Pierre-Emmanuel Joubert; Darragh Duffy; Thierry Walzer; Matthew L. Albert; Marlène Dreux
Type I interferon (IFN-I) responses are critical for the control of RNA virus infections, however, many viruses, including Dengue (DENV) and Chikungunya (CHIKV) virus, do not directly activate plasmacytoid dendritic cells (pDCs), robust IFN-I producing cells. Herein, we demonstrated that DENV and CHIKV infected cells are sensed by pDCs, indirectly, resulting in selective IRF7 activation and IFN-I production, in the absence of other inflammatory cytokine responses. To elucidate pDC immunomodulatory functions, we developed a mouse model in which IRF7 signaling is restricted to pDC. Despite undetectable levels of IFN-I protein, pDC-restricted IRF7 signaling controlled both viruses and was sufficient to protect mice from lethal CHIKV infection. Early pDC IRF7-signaling resulted in amplification of downstream antiviral responses, including an accelerated natural killer (NK) cell-mediated type II IFN response. These studies revealed the dominant, yet indirect role of pDC IRF7-signaling in directing both type I and II IFN responses during arbovirus infections.