Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bojan Polić is active.

Publication


Featured researches published by Bojan Polić.


Nature Methods | 2007

ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome

Michael J. Taussig; Oda Stoevesandt; Carl Borrebaeck; Andrew Bradbury; Dolores J. Cahill; Christian Cambillau; Antoine de Daruvar; Stefan Dübel; Jutta Eichler; Ronald Frank; Toby J. Gibson; David E. Gloriam; Larry Gold; Friedrich W. Herberg; Henning Hermjakob; Jörg D. Hoheisel; Thomas O. Joos; Olli Kallioniemi; Manfred Koegl; Zoltán Konthur; Bernhard Korn; Elisabeth Kremmer; Sylvia Krobitsch; Ulf Landegren; Silvère M. van der Maarel; John McCafferty; Serge Muyldermans; Per-Åke Nygren; Sandrine Palcy; Andreas Plückthun

ProteomeBinders is a new European consortium aiming to establish a comprehensive resource of well-characterized affinity reagents, including but not limited to antibodies, for analysis of the human proteome. Given the huge diversity of the proteome, the scale of the project is potentially immense but nevertheless feasible in the context of a pan-European or even worldwide coordination.


Proceedings of the National Academy of Sciences of the United States of America | 2001

How αβ T cells deal with induced TCRα ablation

Bojan Polić; Désirée Kunkel; Alexander Scheffold; Klaus Rajewsky

On deletion of the gene encoding the constant region of the T cell antigen receptor (TCR)α chain in mature T cells by induced Cre-mediated recombination, the cells lose most of their TCR from the cell surface within 7–10 days, but minute amounts of surface-bound TCRβ chains are retained for long periods of time. In a situation in which cellular influx from the thymus is blocked, TCR-deficient naïve T cells decay over time, the decay rates being faster for CD8+ cells (t1/2 ≈ 16 days) than for CD4+ cells (t1/2 ≈ 46 days). TCR+ naïve cells are either maintained (CD8+) or decay more slowly (CD4+; t1/2 ≈ 78 days.) Numbers of TCR-deficient memory T cells decline very slowly (CD8+ cells; t1/2 ≈ 52 days) or not at all (CD4+ cells), but at the population level, these cells fail to expand as their TCR+ counterparts do. Together with earlier data on T cell maintenance in environments lacking appropriate major histocompatibility complex antigens, these data argue against the possibility that spontaneous ligand-independent signaling by the αβTCR contributes significantly to T-cell homeostasis.


Nature Immunology | 2015

NK cells link obesity-induced adipose stress to inflammation and insulin resistance

Felix M. Wensveen; Vedrana Jelenčić; Sonja Valentić; Marko Šestan; Tamara Turk Wensveen; Sebastian Theurich; Ariella Glasner; Davor Mendrila; Davor Štimac; F. Thomas Wunderlich; Jens C. Brüning; Ofer Mandelboim; Bojan Polić

An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell–activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.


Journal of General Virology | 1994

Late phase inhibition of murine cytomegalovirus replication by synergistic action of interferon-gamma and tumour necrosis factor

Pero Lučin; Stipan Jonjić; Martin Messerle; Bojan Polić; Hartmut Hengel; Ulrich H. Koszinowski

We have shown previously that the antiviral function of CD4+ T lymphocytes against murine cytomegalovirus (MCMV) is associated with the release of interferon-gamma (IFN-gamma). We now demonstrate that IFN-gamma and tumour necrosis factor alpha (TNF-alpha) display synergism in their antiviral activity. As little as 2 ng/ml of IFN-gamma and TNF-alpha reduced the virus yield by about three orders of magnitude. There was no effect on immediate early (IE) and early (E) gene expression as far as the candidate genes IE1, E1 and those encoding the major DNA-binding protein and the DNA polymerase were concerned. Late gene transcription, assayed by the candidate genes encoding glycoprotein B and the MCMV homologue of ICP 18.5, was blocked and MCMV DNA replication was found to be reduced but not halted. The most prominent finding of the cytokine effect, seen by electron microscopy, was an alteration of nucleocapsid formation. Altogether, the synergism is multifaceted and acts at more than one stage during viral morphogenesis. Because the cytokines clearly do not act at an early stage of infection we conclude that the mode of cytokine activity differs between alpha- and betaherpesviruses.


Journal of Experimental Medicine | 2005

NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145

Astrid Krmpotić; Milena Hasan; Andrea Loewendorf; Tanja Saulig; Anne Halenius; Tihana Lenac; Bojan Polić; Ivan Bubić; Anja Kriegeskorte; Ester Pernjak-Pugel; Martin Messerle; Hartmut Hengel; Dirk H. Busch; Ulrich H. Koszinowski; Stipan Jonjić

The NK cell–activating receptor NKG2D interacts with three different cellular ligands, all of which are regulated by mouse cytomegalovirus (MCMV). We set out to define the viral gene product regulating murine UL16-binding protein-like transcript (MULT)-1, a newly described NKG2D ligand. We show that MCMV infection strongly induces MULT-1 gene expression, but surface expression of this glycoprotein is nevertheless completely abolished by the virus. Screening a panel of MCMV deletion mutants defined the gene m145 as the viral regulator of MULT-1. The MCMV m145-encoded glycoprotein turned out to be necessary and sufficient to regulate MULT-1 by preventing plasma membrane residence of MULT-1. The importance of MULT-1 in NK cell regulation in vivo was confirmed by the attenuating effect of the m145 deletion that was lifted after NK cell depletion. Our findings underline the significance of escaping MULT-1/NKG2D signaling for viral survival and maintenance.


Science | 2011

The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy.

Jessica Strid; Olga Sobolev; Biljana Zafirova; Bojan Polić; Adrian Hayday

Epidermal abrasion and T cells in the skin work together to drive the type of immune responses seen in allergy and asthma. Epithelial cells respond to physicochemical damage with up-regulation of major histocompatibility complex–like ligands that can activate the cytolytic potential of neighboring intraepithelial T cells by binding the activating receptor, NKG2D. The systemic implications of this lymphoid stress-surveillance response, however, are unknown. We found that antigens encountered at the same time as cutaneous epithelial stress induced strong primary and secondary systemic, T helper 2 (TH2)–associated atopic responses in mice. These responses required NKG2D-dependent communication between dysregulated epithelial cells and tissue-associated lymphoid cells. These data are germane to uncertainty over the afferent induction of TH2 responses and provide a molecular framework for considering atopy as an important component of the response to tissue damage and carcinogenesis.


Journal of General Virology | 1993

Participation of endogenous tumour necrosis factor α in host resistance to cytomegalovirus infection

Ivica Pavić; Bojan Polić; Irena Crnković; Pero Lučin; Stipan Jonjić; Ulrich H. Koszinowski

Interferon gamma (IFN gamma) represents an essential cytokine involved in murine cytomegalovirus (MCMV) clearance from the salivary gland and the control of horizontal transmission. Because IFN gamma cannot be responsible for all cytokine effects during recovery from MCMV infection we have now tested the potential participation of tumour necrosis factor alpha (TNF alpha) in the antiviral defence. Neutralization of endogenous TNF alpha abolished the antiviral activity of CD4 T cells in immunocompetent as well as in CD8 subset-deficient mice. These data suggest that the antiviral effect of the CD4 subset requires the presence of at least two cytokines, namely IFN gamma and TNF alpha. Depletion of endogenous TNF alpha in adoptive cell transfer recipients diminished the antiviral function of CD8 T lymphocytes suggesting that TNF alpha also participates in CD8 T cell effector functions. Furthermore, endogenous cytokines were found to be required for survival after infection with lethal doses of MCMV, whereas immunotherapy with recombinant TNF alpha and IFN gamma could not limit virus replication in vivo. The results suggest that, similar to IFN gamma, TNF alpha is an integral part of the protective mechanisms involved in cytomegalovirus clearance.


Journal of Immunology | 2011

Cutting Edge: CD8+ T Cell Priming in the Absence of NK Cells Leads to Enhanced Memory Responses

Katrina Soderquest; Thierry Walzer; Biljana Zafirova; Linda Klavinskis; Bojan Polić; Eric Vivier; Graham M. Lord; Alfonso Martín-Fontecha

It is uncertain whether NK cells modulate T cell memory differentiation. By using a genetic model that allows the selective depletion of NK cells, we show in this study that NK cells shape CD8+ T cell fate by killing recently activated CD8+ T cells in an NKG2D- and perforin-dependent manner. In the absence of NK cells, the differentiation of CD8+ T cells is strongly biased toward a central memory T cell phenotype. Although, on a per-cell basis, memory CD8+ T cells generated in the presence or the absence of NK cells have similar functional features and recall capabilities, NK cell deletion resulted in a significantly higher number of memory Ag-specific CD8+ T cells, leading to more effective control of tumors carrying model Ags. The enhanced memory responses induced by the transient deletion of NK cells may provide a rational basis for the design of new vaccination strategies.


Immunity | 2009

Altered NK Cell Development and Enhanced NK Cell-Mediated Resistance to Mouse Cytomegalovirus in NKG2D-Deficient Mice

Biljana Zafirova; Sanja Mandarić; Ronald Antulov; Astrid Krmpotić; Helena Jonsson; Wayne M. Yokoyama; Stipan Jonjić; Bojan Polić

NKG2D is a potent activating receptor on natural killer (NK) cells and acts as a molecular sensor for stressed cells expressing NKG2D ligands such as infected or tumor-transformed cells. Although NKG2D is expressed on NK cell precursors, its role in NK cell development is not known. We have generated NKG2D-deficient mice by targeting the Klrk1 locus. Here we provide evidence for an important regulatory role of NKG2D in the development of NK cells. The absence of NKG2D caused faster division of NK cells, perturbation in size of some NK cell subpopulations, and their augmented sensitivity to apoptosis. As expected, Klrk1(-/-) NK cells are less responsive to tumor targets expressing NKG2D ligands. Klrk1(-/-) mice, however, showed an enhanced NK cell-mediated resistance to mouse cytomegalovirus infection as a consequence of NK cell dysregulation. Altogether, these findings provide evidence for regulatory function of NKG2D in NK cell physiology.


European Journal of Immunology | 2015

The “Big Bang” in obese fat: events initiating obesity-induced adipose tissue inflammation

Felix M. Wensveen; Sonja Valentić; Marko Šestan; Tamara Turk Wensveen; Bojan Polić

Obesity is associated with the accumulation of pro‐inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro‐inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL‐4, IL‐5, and IL‐13, which keep adipose tissue macrophages (ATMs) in an anti‐inflammatory, M2‐like state. Diet‐induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN‐γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity‐induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8+ T cells, which produce IFN‐γ, driving M1 ATM polarization. A rapid accumulation of pro‐inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity‐induced loss of homeostasis which marks the initiation of VAT inflammation.

Collaboration


Dive into the Bojan Polić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge