Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bill M. Jesdale is active.

Publication


Featured researches published by Bill M. Jesdale.


Environmental Health Perspectives | 2005

Separate and Unequal: Residential Segregation and Estimated Cancer Risks Associated with Ambient Air Toxics in U.S. Metropolitan Areas

Rachel Morello-Frosch; Bill M. Jesdale

This study examines links between racial residential segregation and estimated ambient air toxics exposures and their associated cancer risks using modeled concentration estimates from the U.S. Environmental Protection Agency’s National Air Toxics Assessment. We combined pollutant concentration estimates with potencies to calculate cancer risks by census tract for 309 metropolitan areas in the United States. This information was combined with socioeconomic status (SES) measures from the 1990 Census. Estimated cancer risks associated with ambient air toxics were highest in tracts located in metropolitan areas that were highly segregated. Disparities between racial/ethnic groups were also wider in more segregated metropolitan areas. Multivariate modeling showed that, after controlling for tract-level SES measures, increasing segregation amplified the cancer risks associated with ambient air toxics for all racial groups combined [highly segregated areas: relative cancer risk (RCR) = 1.04; 95% confidence interval (CI), 1.01–107; extremely segregated areas: RCR = 1.32; 95% CI, 1.28–1.36]. This segregation effect was strongest for Hispanics (highly segregated areas: RCR = 1.09; 95% CI, 1.01–1.17; extremely segregated areas: RCR = 1.74; 95% CI, 1.61–1.88) and weaker among whites (highly segregated areas: RCR = 1.04; 95% CI, 1.01–1.08; extremely segregated areas: RCR = 1.28; 95% CI, 1.24–1.33), African Americans (highly segregated areas: RCR = 1.09; 95% CI, 0.98–1.21; extremely segregated areas: RCR = 1.38; 95% CI, 1.24–1.53), and Asians (highly segregated areas: RCR = 1.10; 95% CI, 0.97–1.24; extremely segregated areas: RCR = 1.32; 95% CI, 1.16–1.51). Results suggest that disparities associated with ambient air toxics are affected by segregation and that these exposures may have health significance for populations across racial lines.


Environmental Health Perspectives | 2013

Maternal exposure to particulate air pollution and term birth weight : a multi-country evaluation of effect and heterogeneity

Payam Dadvand; Jennifer D. Parker; Michelle L. Bell; Matteo Bonzini; Michael Brauer; Lyndsey A. Darrow; Ulrike Gehring; Svetlana V. Glinianaia; Nelson Gouveia; Eun Hee Ha; Jong Han Leem; Edith H. van den Hooven; Bin Jalaludin; Bill M. Jesdale; Johanna Lepeule; Rachel Morello-Frosch; Geoffrey Morgan; Angela Cecilia Pesatori; Frank H. Pierik; Tanja Pless-Mulloli; David Q. Rich; Sheela Sathyanarayana; Ju-Hee Seo; Rémy Slama; Matthew J. Strickland; Lillian Tamburic; Daniel Wartenberg; Mark J. Nieuwenhuijsen; Tracey J. Woodruff

Background: A growing body of evidence has associated maternal exposure to air pollution with adverse effects on fetal growth; however, the existing literature is inconsistent. Objectives: We aimed to quantify the association between maternal exposure to particulate air pollution and term birth weight and low birth weight (LBW) across 14 centers from 9 countries, and to explore the influence of site characteristics and exposure assessment methods on between-center heterogeneity in this association. Methods: Using a common analytical protocol, International Collaboration on Air Pollution and Pregnancy Outcomes (ICAPPO) centers generated effect estimates for term LBW and continuous birth weight associated with PM10 and PM2.5 (particulate matter ≤ 10 and 2.5 µm). We used meta-analysis to combine the estimates of effect across centers (~ 3 million births) and used meta-regression to evaluate the influence of center characteristics and exposure assessment methods on between-center heterogeneity in reported effect estimates. Results: In random-effects meta-analyses, term LBW was positively associated with a 10-μg/m3 increase in PM10 [odds ratio (OR) = 1.03; 95% CI: 1.01, 1.05] and PM2.5 (OR = 1.10; 95% CI: 1.03, 1.18) exposure during the entire pregnancy, adjusted for maternal socioeconomic status. A 10-μg/m3 increase in PM10 exposure was also negatively associated with term birth weight as a continuous outcome in the fully adjusted random-effects meta-analyses (–8.9 g; 95% CI: –13.2, –4.6 g). Meta-regressions revealed that centers with higher median PM2.5 levels and PM2.5:PM10 ratios, and centers that used a temporal exposure assessment (compared with spatiotemporal), tended to report stronger associations. Conclusion: Maternal exposure to particulate pollution was associated with LBW at term across study populations. We detected three site characteristics and aspects of exposure assessment methodology that appeared to contribute to the variation in associations reported by centers.


Environmental Health | 2010

Ambient air pollution exposure and full-term birth weight in California

Rachel Morello-Frosch; Bill M. Jesdale; James Sadd; Manuel Pastor

BackgroundStudies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births.MethodsWe estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth.Results3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mothers residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g) per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g) per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g) per pphm ozone, -7.7 g (-7.9 g, -6.6 g) per 10 μ g/m3 particulate matter under 10 μm, -12.8 g (-14.3 g, -11.3 g) per 10 μ g/m3 particulate matter under 2.5 μm, and -9.3 g (-10.7 g, -7.9 g) per 10 μ g/m3 of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters.ConclusionsThis study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether a small shift in the population distribution of birth weight has broader health implications. However, the ubiquity of air pollution exposures, the responsiveness of pollutant levels to regulation, and the fact that the highest pollution levels in California are lower than those regularly experienced in other countries suggest that precautionary efforts to reduce pollutants may be beneficial for infant health from a population perspective.


Environmental Science & Technology | 2009

An index for assessing demographic inequalities in cumulative environmental hazards with application to Los Angeles, California.

Jason G. Su; Rachel Morello-Frosch; Bill M. Jesdale; Amy D. Kyle; Bhavna Shamasunder; Michael Jerrett

Researchers in environmental justice contend that low-income communities and communities of color face greater impacts from environmental hazards. This is also of concern for policy makers. In this context, our paper has two principal objectives. First, we propose a method for creating an index capable of summarizing racial-ethnic and socioeconomic inequalities from the impact of cumulative environmental hazards. Second, we apply the index to Los Angeles County to illustrate the potential applications and complexities of its implementation. Individual environmental inequality indices are calculated based on unequal shares of environmental hazards for racial-ethnic groups and socioeconomic positions. The illustrated hazards include ambient concentrations of particulate matter, nitrogen dioxide, and estimates of cancer risk associated with modeled estimates for diesel particulate matter. The cumulative environmental hazard inequality index (CEHII) then combines individual environmental hazards, using either a multiplicative or an additive model. Significant but modest inequalities exist for both individual and cumulative environmental hazards in Los Angeles. The highest level of inequality among racial-ethnic and socioeconomic groups occurs when a multiplicative model is used to estimate cumulative hazard. The CEHII provides a generalized framework that incorporates environmental hazards and socioeconomic characteristics to assess inequalities in cumulative environmental risks.


International Journal of Environmental Research and Public Health | 2011

Playing It Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California

James Sadd; Manuel Pastor; Rachel Morello-Frosch; Justin Scoggins; Bill M. Jesdale

Regulatory agencies, including the U.S. Environmental Protection Agency (US EPA) and state authorities like the California Air Resources Board (CARB), have sought to address the concerns of environmental justice (EJ) advocates who argue that chemical-by-chemical and source-specific assessments of potential health risks of environmental hazards do not reflect the multiple environmental and social stressors faced by vulnerable communities. We propose an Environmental Justice Screening Method (EJSM) as a relatively simple, flexible and transparent way to examine the relative rank of cumulative impacts and social vulnerability within metropolitan regions and determine environmental justice areas based on more than simply the demographics of income and race. We specifically organize 23 indicator metrics into three categories: (1) hazard proximity and land use; (2) air pollution exposure and estimated health risk; and (3) social and health vulnerability. For hazard proximity, the EJSM uses GIS analysis to create a base map by intersecting land use data with census block polygons, and calculates hazard proximity measures based on locations within various buffer distances. These proximity metrics are then summarized to the census tract level where they are combined with tract centroid-based estimates of pollution exposure and health risk and socio-economic status (SES) measures. The result is a cumulative impacts (CI) score for ranking neighborhoods within regions that can inform diverse stakeholders seeking to identify local areas that might need targeted regulatory strategies to address environmental justice concerns.


Environmental Health Perspectives | 2013

The Racial/Ethnic Distribution of Heat Risk–Related Land Cover in Relation to Residential Segregation

Bill M. Jesdale; Rachel Morello-Frosch; Lara Cushing

Objective: We examined the distribution of heat risk–related land cover (HRRLC) characteristics across racial/ethnic groups and degrees of residential segregation. Methods: Block group–level tree canopy and impervious surface estimates were derived from the 2001 National Land Cover Dataset for densely populated urban areas of the United States and Puerto Rico, and linked to demographic characteristics from the 2000 Census. Racial/ethnic groups in a given block group were considered to live in HRRLC if at least half their population experienced the absence of tree canopy and at least half of the ground was covered by impervious surface (roofs, driveways, sidewalks, roads). Residential segregation was characterized for metropolitan areas in the United States and Puerto Rico using the multigroup dissimilarity index. Results: After adjustment for ecoregion and precipitation, holding segregation level constant, non-Hispanic blacks were 52% more likely (95% CI: 37%, 69%), non-Hispanic Asians 32% more likely (95% CI: 18%, 47%), and Hispanics 21% more likely (95% CI: 8%, 35%) to live in HRRLC conditions compared with non-Hispanic whites. Within each racial/ethnic group, HRRLC conditions increased with increasing degrees of metropolitan area-level segregation. Further adjustment for home ownership and poverty did not substantially alter these results, but adjustment for population density and metropolitan area population attenuated the segregation effects, suggesting a mediating or confounding role. Conclusions: Land cover was associated with segregation within each racial/ethnic group, which may be explained partly by the concentration of racial/ethnic minorities into densely populated neighborhoods within larger, more segregated cities. In anticipation of greater frequency and duration of extreme heat events, climate change adaptation strategies, such as planting trees in urban areas, should explicitly incorporate an environmental justice framework that addresses racial/ethnic disparities in HRRLC.


Environmental Health Perspectives | 2011

The International Collaboration on Air Pollution and Pregnancy Outcomes: initial results.

Jennifer D. Parker; David Q. Rich; Svetlana V. Glinianaia; Jong Han Leem; Daniel Wartenberg; Michelle L. Bell; Matteo Bonzini; Michael Brauer; Lyndsey A. Darrow; Ulrike Gehring; Nelson Gouveia; Paolo Grillo; Eun-Hee Ha; Edith H. van den Hooven; Bin Jalaludin; Bill M. Jesdale; Johanna Lepeule; Rachel Morello-Frosch; Geoffrey Morgan; Rémy Slama; Frank H. Pierik; Angela Cecilia Pesatori; Sheela Sathyanarayana; Ju-Hee Seo; Matthew J. Strickland; Lillian Tamburic; Tracey J. Woodruff

Background: The findings of prior studies of air pollution effects on adverse birth outcomes are difficult to synthesize because of differences in study design. Objectives: The International Collaboration on Air Pollution and Pregnancy Outcomes was formed to understand how differences in research methods contribute to variations in findings. We initiated a feasibility study to a) assess the ability of geographically diverse research groups to analyze their data sets using a common protocol and b) perform location-specific analyses of air pollution effects on birth weight using a standardized statistical approach. Methods: Fourteen research groups from nine countries participated. We developed a protocol to estimate odds ratios (ORs) for the association between particulate matter ≤ 10 μm in aerodynamic diameter (PM10) and low birth weight (LBW) among term births, adjusted first for socioeconomic status (SES) and second for additional location-specific variables. Results: Among locations with data for the PM10 analysis, ORs estimating the relative risk of term LBW associated with a 10-μg/m3 increase in average PM10 concentration during pregnancy, adjusted for SES, ranged from 0.63 [95% confidence interval (CI), 0.30–1.35] for the Netherlands to 1.15 (95% CI, 0.61–2.18) for Vancouver, with six research groups reporting statistically significant adverse associations. We found evidence of statistically significant heterogeneity in estimated effects among locations. Conclusions: Variability in PM10–LBW relationships among study locations remained despite use of a common statistical approach. A more detailed meta-analysis and use of more complex protocols for future analysis may uncover reasons for heterogeneity across locations. However, our findings confirm the potential for a diverse group of researchers to analyze their data in a standardized way to improve understanding of air pollution effects on birth outcomes.


Environmental Health Perspectives | 2012

Birth Weight Following Pregnancy during the 2003 Southern California Wildfires

David M. Holstius; Colleen E. Reid; Bill M. Jesdale; Rachel Morello-Frosch

Background: In late October 2003, a series of wildfires exposed urban populations in Southern California to elevated levels of air pollution over several weeks. Previous research suggests that short-term hospital admissions for respiratory outcomes increased specifically as a result of these fires. Objective: We assessed the impact of a wildfire event during pregnancy on birth weight among term infants. Methods: Using records for singleton term births delivered to mothers residing in California’s South Coast Air Basin (SoCAB) during 2001–2005 (n = 886,034), we compared birth weights from pregnancies that took place entirely before or after the wildfire event (n = 747,590) with those where wildfires occurred during the first (n = 60,270), second (n = 39,435), or third (n = 38,739) trimester. The trimester-specific effects of wildfire exposure were estimated using a fixed-effects regression model with several maternal characteristics included as covariates. Results: Compared with pregnancies before and after the wildfires, mean birth weight was estimated to be 7.0 g lower [95% confidence interval (CI): –11.8, –2.2] when the wildfire occurred during the third trimester, 9.7 g lower when it occurred during the second trimester (95% CI: –14.5, –4.8), and 3.3 g lower when it occurred during the first trimester (95% CI: –7.2, 0.6). Conclusions: Pregnancy during the 2003 Southern California wildfires was associated with slightly reduced average birth weight among infants exposed in utero. The extent and increasing frequency of wildfire events may have implications for infant health and development.


Environment International | 2012

Inequalities in cumulative environmental burdens among three urbanized counties in California

Jason G. Su; Michael Jerrett; Rachel Morello-Frosch; Bill M. Jesdale; Amy D. Kyle

Low-income communities and communities of color often suffer from multiple environmental hazards that pose risks to their health. Here we extended a cumulative environmental hazard inequality index (CEHII) - developed to assess inequalities in air pollution hazards - to compare the inequality among three urban counties in California: Alameda, San Diego, and Los Angeles. We included a metric for heat stress to the analysis because exposure to excessively hot weather is increasingly recognized as a threat to human health and well-being. We determined if inequalities from heat stress differed between the three regions and if this added factor modified the metric for inequality from cumulative exposure to air pollution. This analysis indicated that of the three air pollutants considered, diesel particulate matter had the greatest inequality, followed by nitrogen dioxide (NO(2)) and fine particulate matter (PM(2.5)). As measured by our index, the inequalities from cumulative exposure to air pollution were greater than those of single pollutants. Inequalities were significantly different among single air pollutant hazards within each region and between regions; however, inequalities from the cumulative burdens did not differ significantly between any two regions. Modeled absolute and relative heat stress inequalities were small except for relative heat stress in San Diego which had the second highest inequality. Our analysis, techniques, and results provide useful insights for policy makers to assess inequalities between regions and address factors that contribute to overall environmental inequality within each region.


Journal of Homosexuality | 2012

Reported Excellent Health Among Men in Same-Sex and Mixed-Sex Couples: Behavioral Risk Factor Surveillance System, 1993–2010

Bill M. Jesdale; Jason W. Mitchell

Self-reported excellent health was examined across sexual orientation among male adult couples using 18 years of data from the Behavioral Risk Factor Surveillance System. Men in same-sex couples were more likely to report being in excellent health (28.7%) than men in unmarried and married mixed-sex couples (20.4% and 23.2%). After adjusting for other demographic and health factors, men in same-sex couples remained more likely to report excellent health than men in unmarried mixed-sex couples, but not than men in married mixed-sex couples. Reporting only adverse health disparities provides a partial picture of sexual minority health, and discounts the role of resilience and other health promoting factors in these populations.

Collaboration


Dive into the Bill M. Jesdale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lara Cushing

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy D. Kyle

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason G. Su

University of California

View shared research outputs
Top Co-Authors

Avatar

Jennifer D. Parker

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge