Bill P. Crider
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bill P. Crider.
Journal of Biological Chemistry | 2000
Jiantao Ding; Zhao Wu; Bill P. Crider; Yongming Ma; Xinji Li; Clive A. Slaughter; Limin Gong; Xiao Song Xie
ATPase II, a vanadate-sensitive and phosphatidylserine-dependent Mg2+-ATPase, is a member of a subfamily of P-type ATPase and is presumably responsible for aminophospholipid translocation activity in eukaryotic cells. The aminophospholipid translocation activity plays an important physiological role in the maintenance of membrane phospholipid asymmetry that is observed in the plasma membrane as well as the membranes of certain cellular organelles. While the preparations of ATPase II from different sources share common fundamental properties, such as substrate specificity, inhibitor spectrum, and phospholipid dependence, they are divergent in several characteristics. These include specific ATPase activity and phospholipid selectivity. We report here the identification of four isoforms of ATPase II in bovine brain. These isoforms are formed by a combination of two major variations in their primary sequences and show that the structural variation of these isoforms has functional significance in both ATPase activity and phosholipid selectivity. Furthermore, studies with the phosphoenzyme intermediate of ATPase II and its recombinant isoforms revealed that phosphatidylserine is essential for the dephosphorylation of the intermediate. Without phosphatidylserine, ATPase II would be accumulated as phosphoenzyme in the presence of ATP, resulting in the interruption of its catalytic cycle.
Journal of Bioenergetics and Biomembranes | 1989
Dennis K. Stone; Bill P. Crider; Thomas C. Südhof; Xiao Song Xie
Recently a new class of proton-translocating ATPases has been localized to endomembrane compartments in plant, fungal, and mammalian cells. These proton pumps are large hetero-oligomers which have an ATP hydrolytic sector that is functionally and structurally distinct from a transmembranous proton pore. Enzymatic characteristics of these proton pumps are discussed as well as the current state of knowledge regarding subunit composition and function. In addition, recent primary sequence data are discussed which indicate that these proton pumps share a common ancestor with F1F0-type proton pumps of mitochondria
Journal of Biological Chemistry | 2003
Bill P. Crider; Xiao Song Xie
Vacuolar-type H+-translocating ATPases (V-ATPases or V-pumps) are complex proteins containing multiple subunits and are organized into two functional domains: a peripheral catalytic sector V1 and a membranous proton channel V0. The functional coupling of ATP hydrolysis activity to proton transport in V-pumps requires a regulatory component known as subunit H (SFD) as has been shown both in vivo and in vitro (Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993) J. Biol. Chem. 268, 18286–18292; Xie, X. S., Crider, B. P., Ma, Y. M., and Stone, D. K. (1994) J. Biol. Chem. 269, 25809–25815). Ca2+ is thought to uncouple V-pumps because it is found to support ATP hydrolysis but not proton transport, while Mg2+ supports both activities. The direct effect of phospholipids on the coupling of V-ATPases has not been reported, likely due to the fact that phospholipids are constituents of biological membranes. We now report that Ca2+-induced uncoupling of the bovine brain V-ATPase can be reversed by imposition of a favorable membrane potential. Furthermore we report a simple “membrane-free” assay system using the V0 proton channel-specific inhibitor bafilomycin as a probe to detect the coupling of V-ATPase under certain conditions. With this system, we have characterized the functional effect of subunit H, divalent cations, and phospholipids on bovine brain V-ATPase and have found that each of these three factors plays a critical role in the functional coupling of the V-pump.
Journal of Biological Chemistry | 1998
Zhiming Zhou; Sheng Bin Peng; Bill P. Crider; Clive A. Slaughter; Xiao Song Xie; Dennis K. Stone
The vacuolar type proton-translocating ATPase of clathrin-coated vesicles is composed of two large domains: an extramembranous catalytic sector and a transmembranous proton channel. In addition, two polypeptides of 50 and 57 kDa have been found to co-purify with the pump. These proteins, termed SFD (sub-fifty-eight-kDadimer) activate ATPase activity of the enzyme and couple ATPase activity to proton flow (Xie, X.-S., Crider, B.P., Ma, Y.-M., and Stone, D. K. (1994) J. Biol. Chem. 269, 28509–25815). It has also been reported that the clathrin-coated vesicle proton pump contains AP50, a 50-kDa component of the AP-2 complex responsible for the assembly of clathrin-coated pits, and that AP50 is essential for function of the proton pump (Liu, Q., Feng, Y., and Forgac, M. (1994) J. Biol. Chem. 269, 31592–31597). We demonstrate through the use of anti-AP50 antibody, identical to that of the latter study, that hydroxylapatite chromatography removes AP50 from impure proton pump preparations and that purified proton pump, devoid of AP50, is fully functional. To determine the true molecular identity of SFD, both the 50- and 57-kDa polypeptides were directly sequenced. A polymerase chain reaction-based strategy was used to screen a bovine brain cDNA library, yielding independent full-length clones (SFD-4A and SFD-21); these were identical in their open reading frames and encoded a protein with a predicted mass of 54,187 Da. The SFD-21 clone was then used in a reverse transcription-polymerase chain reaction-based strategy to isolate a related, but distinct, transcript present in bovine brain mRNA. The nucleotide and predicted amino acid sequences of this isolate are identical to SFD-21 except that the isolate contains a 54-base pair insert in the open reading frame, resulting in a protein with a predicted mass of 55,933 Da. Both clones had 16% identity toVMA13 of Saccharomyces cerevisiae. No sequence homology between the SFD clones and AP50 was detectable. Anti-peptide antibodies were generated against an epitope common to the two proteins and to the unique 18-amino acid insert of the larger protein. The former reacted with both components of native SFD, whereas the latter reacted only with the 57-kDa component. We term the 57- and 50-kDa polypeptides SFDα and SFDβ, respectively.
Journal of Biological Chemistry | 1999
Zhiming Zhou; Sheng Bin Peng; Bill P. Crider; Per Andersen; Xiao Song Xie; Dennis K. Stone
The vacuolar proton pump of clathrin-coated vesicles is composed of two general sectors, a cytosolic, ATP hydrolytic domain (V1) and an intramembranous proton channel, V0. V1 is comprised of 8–9 subunits including polypeptides of 50 and 57 kDa, termed SFD (SubFifty-eight-kDa Doublet). Although SFD is essential to the activation of ATPase and proton pumping activities catalyzed by holoenzyme, its constituent polypeptides have not been separated to determine their respective roles in ATPase functions. Recent molecular characterization of these subunits revealed that they are isoforms that arise through an alternative splicing mechanism (Zhou, Z., Peng, S.-B., Crider, B.P., Slaughter, C., Xie, X.S., and Stone, D.K. (1998) J. Biol. Chem. 273, 5878–5884). To determine the functional characteristics of the 57-kDa (SFDα)1 and 50-kDa (SFDβ) isoforms, we expressed these proteins in Escherichia coli. We determined that purified recombinant proteins, rSFDα and rSFDβ, when reassembled with SFD-depleted holoenzyme, are functionally interchangeable in restoration of ATPase and proton pumping activities. In addition, we determined that the V-pump of chromaffin granules has only the SFDα isoform in its native state and that rSFDα and rSFDβ are equally effective in restoring ATPase and proton pumping activities to SFD-depleted enzyme. Finally, we found that SFDα and SFDβ structurally interact not only with V1, but also withV0, indicating that these activator subunits may play both structural and functional roles in coupling ATP hydrolysis to proton flow.
Journal of Biological Chemistry | 1996
Sheng Bin Peng; Bill P. Crider; Sue Jean Tsai; Xiao Song Xie; Dennis K. Stone
The clathrin-coated vesicle H-ATPase is composed of a peripheral catalytic sector (V) and an integral membrane proton channel (V), both of which are multiple subunit complexes. This study was conducted to determine if subunit F, previously identified in vacuolar proton pumps of tobacco hornworm and yeast, was present in mammalian pumps. Using a polymerase chain reaction-based strategy, we have isolated and sequenced cDNA clones from bovine and rat brain cDNA libraries. A full-length clone from rat brain encodes a 119-amino acid polypeptide with a predicted molecular mass of 13,370 Da and with approximately 72 and 49% identity to subunit F of tobacco hornworm and yeast, respectively. Southern and Northern blot analyses indicate that the protein is encoded by a single gene. An anti-peptide antibody, directed against deduced protein sequence, was affinity-purified and shown to react with a 14-kDa polypeptide that is present in a highly purified pump prepared from clathrin-coated vesicles and also isolated V. When stripped clathrin-coated vacuolars and purified chromaffin granule membranes were treated with KI in the presence of ATP, the 14-kDa subunit was released from both membranes, further indicating that it is part of the peripheral catalytic sector. In addition, direct sequencing of this 14-kDa component of the coated vacuolar proton pump confirmed its identity as a subunit F homologue.
Journal of Biological Chemistry | 1994
Bill P. Crider; Xiao Song Xie; Dennis K. Stone
Human Molecular Genetics | 2011
Natacha Roudnitzky; Bernd Bufe; Sophie Thalmann; Christina Kuhn; Howard Gunn; Chao Xing; Bill P. Crider; Maik Behrens; Wolfgang Meyerhof; Stephen Wooding
Journal of Biological Chemistry | 1994
Sheng Bin Peng; Bill P. Crider; Xiao Song Xie; Dennis K. Stone
Journal of Biological Chemistry | 1999
Sheng Bin Peng; Xinji Li; Bill P. Crider; Zhiming Zhou; Per Andersen; Sue Jean Tsai; Xiao Song Xie; Dennis K. Stone