Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Limin Gong is active.

Publication


Featured researches published by Limin Gong.


Gene | 2000

Ubiquitin-like proteins: new wines in new bottles.

Edward T.H. Yeh; Limin Gong; Tetsu Kamitani

Ubiquitin is a small polypeptide that covalently modifies other cellular proteins and targets them to the proteasome for degradation. In recent years, ubiquitin-dependent proteolysis has been demonstrated to play a critical role in the regulation of many cellular processes, such as cell cycle progression, cell signaling, and immune recognition. The recent discovery of three new ubiquitin-like proteins, NEDD8, Sentrin/SUMO, and Apg12, has further broadened the horizon of this type of post-translational protein modification. This review will focus on the biology and biochemistry of the Sentrin/SUMO and NEDD8 modification pathways, which are clearly distinct from the ubiquitination pathway and have unique biological functions.


Nature Genetics | 2012

TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome

Catherine Boileau; Dong Chuan Guo; Nadine Hanna; Ellen S. Regalado; Delphine Detaint; Limin Gong; Mathilde Varret; Siddharth K. Prakash; Alexander H. Li; Hyacintha D'Indy; Alan C. Braverman; Bernard Grandchamp; Callie S. Kwartler; Laurent Gouya; Regie Lyn P. Santos-Cortez; Marianne Abifadel; Suzanne M. Leal; Christine Muti; Jay Shendure; Marie Sylvie Gross; Mark J. Rieder; Alec Vahanian; Deborah A. Nickerson; Jean Michel; Guillaume Jondeau; Dianna M. Milewicz

A predisposition for thoracic aortic aneurysms leading to acute aortic dissections can be inherited in families in an autosomal dominant manner. Genome-wide linkage analysis of two large unrelated families with thoracic aortic disease followed by whole-exome sequencing of affected relatives identified causative mutations in TGFB2. These mutations—a frameshift mutation in exon 6 and a nonsense mutation in exon 4—segregated with disease with a combined logarithm of odds (LOD) score of 7.7. Sanger sequencing of 276 probands from families with inherited thoracic aortic disease identified 2 additional TGFB2 mutations. TGFB2 encodes transforming growth factor (TGF)-β2, and the mutations are predicted to cause haploinsufficiency for TGFB2; however, aortic tissue from cases paradoxically shows increased TGF-β2 expression and immunostaining. Thus, haploinsufficiency for TGFB2 predisposes to thoracic aortic disease, suggesting that the initial pathway driving disease is decreased cellular TGF-β2 levels leading to a secondary increase in TGF-β2 production in the diseased aorta.


Journal of Biological Chemistry | 1999

Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway

Limin Gong; Edward T.H. Yeh

NEDD8 is a ubiquitin-like molecule that can be covalently conjugated to a limited number of cellular proteins, such as Cdc53/cullin. We have previously reported that the C terminus of NEDD8 is efficiently processed to expose Gly-76, which is required for conjugation to target proteins. A combination of data base searches and polymerase chain reaction cloning was used to identify a cDNA encoding human UBA3, which is 38% identical to the yeast homologue, 22% identical to human UBA2, and 19% identical to the C-terminal region of human UBE1. The human UBA3 gene is located on chromosome 3p13 and gave rise to a 2.2-kilobase pair transcript that was detected in all tissues. Human UBA3 could be precipitated with glutathione S-transferase (GST)-NEDD8, but not with GST-ubiquitin or GST-sentrin-1. Moreover, human UBA3 could form a β-mercaptoethanol-sensitive conjugate with NEDD8 in the presence of APP-BP1, a protein with sequence homology to the N-terminal half of ubiquitin-activating enzyme. We have also cloned human UBC12 and demonstrated that it could form a thiol ester linkage with NEDD8 in the presence of the activating enzyme complex. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway should allow for a more detailed study of the role of NEDD8 modification in health and disease.


American Journal of Human Genetics | 2010

Mutations in Myosin Light Chain Kinase Cause Familial Aortic Dissections

Li Wang; Dong Chuan Guo; Jiumei Cao; Limin Gong; Kristine E. Kamm; Ellen S. Regalado; Li Li; Sanjay Shete; Wei Qi He; Min Sheng Zhu; Stephan Offermanns; Dawna Gilchrist; John A. Elefteriades; James T. Stull; Dianna M. Milewicz

Mutations in smooth muscle cell (SMC)-specific isoforms of α-actin and β-myosin heavy chain, two major components of the SMC contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease (p = 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding domains, and p.S1759P alters amino acids in the α-helix of the calmodulin binding sequence, which disrupts kinase binding to calmodulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown of Mylk demonstrate altered gene expression and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that heterozygous loss-of-function mutations in MYLK are associated with aortic dissections.


Journal of Biological Chemistry | 2006

Characterization of a Family of Nucleolar SUMO-specific Proteases with Preference for SUMO-2 or SUMO-3

Limin Gong; Edward T.H. Yeh

SUMOylation is a reversible process regulated by a family of sentrin/SUMO-specific proteases (SENPs). Of the six SENP family members, except for SENP1 and SENP2, the substrate specificities of the rest of SENPs are not well defined. Here, we have described SENP5, which has restricted substrate specificity. SENP5 showed SUMO-3 C-terminal hydrolase activity but could not process pro-SUMO-1 in vitro. Furthermore, SENP5 showed more limited isopeptidase activity in vitro. In vivo, SENP5 showed isopeptidase activity against SUMO-2 and SUMO-3 conjugates but not against SUMO-1 conjugates. Native SENP5 localized mainly to the nucleolus but was also found in the nucleus. The N terminus of SENP5 contains a stretch of amino acids responsible for the nucleolar localization of SENP5. N-terminal-truncated SENP5 co-localized with PML, a known SUMO substrate. Using PML SUMOylation mutants as model substrates, we showed that SENP5 can remove poly-SUMO-2 or poly-SUMO-3 from the Lys160 or Lys490 positions of PML. However, SENP5 could not remove SUMO-1 from the Lys160 or Lys490 positions of PML. Nonetheless, SENP5 could remove SUMO-1, -2, and -3 from the Lys65 position of PML. Thus, SENP5 also possesses limited SUMO-1 isopeptidase activity. We were also able to show that SENP3 has substrate specificity similar to that of SENP5. Thus, SENP3 and SENP5 constitute a subfamily of SENPs that regulate the formation of SUMO-2 or SUMO-3 conjugates and, to a less extent, SUMO-1 modification.


Journal of Biological Chemistry | 1997

Preferential Interaction of Sentrin with a Ubiquitin-conjugating Enzyme, Ubc9

Limin Gong; Tetsu Kamitani; Kenichi Fujise; Laura S. Caskey; Edward T.H. Yeh

Sentrin is a ubiquitin-like molecule that has been shown to interact with the death domains of Fas and tumor necrosis factor receptor 1 (TNFR1), PML, Rad51, Rad52, and RanGAP1. We have reported previously that sentrin can be conjugated to other proteins in a manner analogous to protein ubiquitination (Kamitani, T., Nguyen, H. P., and Yeh, E. T. H. (1997) J. Biol. Chem. 272, 14001–14004). Furthermore, the conserved C-terminal Gly-Gly residues are required for sentrinization to occur. To identify enzymes which play a role in sentrinization, the yeast two-hybrid system was used to screen a human placenta cDNA library using sentrin as bait. A strong positive interacting clone was found to contain a cDNA insert encoding the ubiquitin-conjugating enzyme, Ubc9. The interaction between sentrin and Ubc9 required the ubiquitin domain and the C-terminal Gly-Gly residues of sentrin. This interaction appears to be specific because sentrin could only interact weakly with UbcH5B, but could not interact with HHR6B, UbcH6 nor E2-EPF. In vitro translated sentrin could be precipitated by a GST-Ubc9 fusion protein, but not by glutathione S-transferase. A β-mercaptoethanol-sensitive Ubc9-sentrin conjugate could also be identified in the in vitro binding assay. Substitution of the conserved cysteine residue of Ubc9 by serine abolished the formation of the Ubc9-sentrin conjugate. Taken together, Ubc9 is a strong candidate to be the key conjugating enzyme in the sentrinization pathway.


FEBS Letters | 1999

Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex

Limin Gong; Bing Li; Stefanos G. Millas; Edward T.H. Yeh

Sentrin‐1/SUMO‐1 is a novel ubiquitin‐like protein, which can covalently modify a limited number of cellular proteins. Here we report the identification of the sentrin‐activating enzyme complex, which consists of two proteins AOS1 and UBA2. Human AOS1 is homologous to the N‐terminal half of E1, whereas human UBA2 is homologous to the C‐terminal half of E1. The human UBA2 gene is located on chromosome 19q12. Human UBA2 could form a β‐mercaptoethanol‐sensitive conjugate with members of the sentrin family, but not with ubiquitin of NEDD8, in the presence of AOS1. Identification of human UBA2 and AOS1 should allow a more detailed analysis of the enzymology of the activation of ubiquitin‐like proteins.


Journal of Biological Chemistry | 2000

Identification and Functional Expression of Four Isoforms of ATPase II, the Putative Aminophospholipid Translocase EFFECT OF ISOFORM VARIATION ON THE ATPase ACTIVITY AND PHOSPHOLIPID SPECIFICITY

Jiantao Ding; Zhao Wu; Bill P. Crider; Yongming Ma; Xinji Li; Clive A. Slaughter; Limin Gong; Xiao Song Xie

ATPase II, a vanadate-sensitive and phosphatidylserine-dependent Mg2+-ATPase, is a member of a subfamily of P-type ATPase and is presumably responsible for aminophospholipid translocation activity in eukaryotic cells. The aminophospholipid translocation activity plays an important physiological role in the maintenance of membrane phospholipid asymmetry that is observed in the plasma membrane as well as the membranes of certain cellular organelles. While the preparations of ATPase II from different sources share common fundamental properties, such as substrate specificity, inhibitor spectrum, and phospholipid dependence, they are divergent in several characteristics. These include specific ATPase activity and phospholipid selectivity. We report here the identification of four isoforms of ATPase II in bovine brain. These isoforms are formed by a combination of two major variations in their primary sequences and show that the structural variation of these isoforms has functional significance in both ATPase activity and phosholipid selectivity. Furthermore, studies with the phosphoenzyme intermediate of ATPase II and its recombinant isoforms revealed that phosphatidylserine is essential for the dephosphorylation of the intermediate. Without phosphatidylserine, ATPase II would be accumulated as phosphoenzyme in the presence of ATP, resulting in the interruption of its catalytic cycle.


American Journal of Human Genetics | 2013

Recurrent Gain-of-Function Mutation in PRKG1 Causes Thoracic Aortic Aneurysms and Acute Aortic Dissections

Dong Chuan Guo; Ellen S. Regalado; Darren E. Casteel; Regie Lyn P. Santos-Cortez; Limin Gong; Jeong Joo Kim; Sarah Dyack; S. Gabrielle Horne; Guijuan Chang; Guillaume Jondeau; Catherine Boileau; Joseph S. Coselli; Zhenyu Li; Suzanne M. Leal; Jay Shendure; Mark J. Rieder; Michael J. Bamshad; Deborah A. Nickerson; Choel Kim; Dianna M. Milewicz

Gene mutations that lead to decreased contraction of vascular smooth-muscle cells (SMCs) can cause inherited thoracic aortic aneurysms and dissections. Exome sequencing of distant relatives affected by thoracic aortic disease and subsequent Sanger sequencing of additional probands with familial thoracic aortic disease identified the same rare variant, PRKG1 c.530G>A (p.Arg177Gln), in four families. This mutation segregated with aortic disease in these families with a combined two-point LOD score of 7.88. The majority of affected individuals presented with acute aortic dissections (63%) at relatively young ages (mean 31 years, range 17-51 years). PRKG1 encodes type I cGMP-dependent protein kinase (PKG-1), which is activated upon binding of cGMP and controls SMC relaxation. Although the p.Arg177Gln alteration disrupts binding to the high-affinity cGMP binding site within the regulatory domain, the altered PKG-1 is constitutively active even in the absence of cGMP. The increased PKG-1 activity leads to decreased phosphorylation of the myosin regulatory light chain in fibroblasts and is predicted to cause decreased contraction of vascular SMCs. Thus, identification of a gain-of-function mutation in PRKG1 as a cause of thoracic aortic disease provides further evidence that proper SMC contractile function is critical for maintaining the integrity of the thoracic aorta throughout a lifetime.


Circulation Research | 2012

Rare, Nonsynonymous Variant in the Smooth Muscle-Specific Isoform of Myosin Heavy Chain, MYH11, R247C, Alters Force Generation in the Aorta and Phenotype of Smooth Muscle Cells

Shao Qing Kuang; Callie S. Kwartler; Katerina L. Byanova; John Pham; Limin Gong; Siddharth K. Prakash; Jian Huang; Kristine E. Kamm; James T. Stull; H. Lee Sweeney; Dianna M. Milewicz

Rationale: Mutations in myosin heavy chain (MYH11) cause autosomal dominant inheritance of thoracic aortic aneurysms and dissections. At the same time, rare, nonsynonymous variants in MYH11 that are predicted to disrupt protein function but do not cause inherited aortic disease are common in the general population and the vascular disease risk associated with these variants is unknown. Objective: To determine the consequences of the recurrent MYH11 rare variant, R247C, through functional studies in vitro and analysis of a knock-in mouse model with this specific variant, including assessment of aortic contraction, response to vascular injury, and phenotype of primary aortic smooth muscle cells (SMCs). Methods and Results: The steady state ATPase activity (actin-activated) and the rates of phosphate and ADP release were lower for the R247C mutant myosin than for the wild-type, as was the rate of actin filament sliding in an in vitro motility assay. Myh11R247C/R247C mice exhibited normal growth, reproduction, and aortic histology but decreased aortic contraction. In response to vascular injury, Myh11R247C/R247C mice showed significantly increased neointimal formation due to increased SMC proliferation when compared with the wild-type mice. Primary aortic SMCs explanted from the Myh11R247C/R247C mice were dedifferentiated compared with wild-type SMCs based on increased proliferation and reduced expression of SMC contractile proteins. The mutant SMCs also displayed altered focal adhesions and decreased Rho activation, associated with decreased nuclear localization of myocardin-related transcription factor-A. Exposure of the Myh11R247C/R247C SMCs to a Rho activator rescued the dedifferentiated phenotype of the SMCs. Conclusions: These results indicate that a rare variant in MYH11, R247C, alters myosin contractile function and SMC phenotype, leading to increased proliferation in vitro and in response to vascular injury.

Collaboration


Dive into the Limin Gong's collaboration.

Top Co-Authors

Avatar

Dianna M. Milewicz

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Dong Chuan Guo

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Edward T.H. Yeh

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Ellen S. Regalado

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Callie S. Kwartler

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Siddharth K. Prakash

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Suzanne M. Leal

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jay Shendure

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jiumei Cao

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge