Bingchen Deng
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bingchen Deng.
Nano Letters | 2016
Qiushi Guo; Andreas Pospischil; Maruf A. Bhuiyan; Hao Jiang; He Tian; Damon B. Farmer; Bingchen Deng; Cheng Li; Shu-Jen Han; Han Wang; Qiangfei Xia; T. P. Ma; Thomas Mueller; Fengnian Xia
Recently, black phosphorus (BP) has joined the two-dimensional material family as a promising candidate for photonic applications due to its moderate bandgap, high carrier mobility, and compatibility with a diverse range of substrates. Photodetectors are probably the most explored BP photonic devices, however, their unique potential compared with other layered materials in the mid-infrared wavelength range has not been revealed. Here, we demonstrate BP mid-infrared detectors at 3.39 μm with high internal gain, resulting in an external responsivity of 82 A/W. Noise measurements show that such BP photodetectors are capable of sensing mid-infrared light in the picowatt range. Moreover, the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BPs moderate bandgap. The high photoresponse at mid-infrared wavelengths and the large dynamic bandwidth, together with its unique polarization dependent response induced by low crystalline symmetry, can be coalesced to promise photonic applications such as chip-scale mid-infrared sensing and imaging at low light levels.
arXiv: Materials Science | 2015
Xuesong Li; Bingchen Deng; Xiaomu Wang; Sizhe Chen; Michelle Vaisman; Shun-ichiro Karato; Grace A. Pan; Minjoo Larry Lee; Judy J. Cha; Han Wang; Fengnian Xia
We report a scalable approach to synthesize a large-area (up to 4 mm) thin black phosphorus (BP) film on a flexible substrate. We first deposited a red phosphorus (RP) thin-film on a flexible polyester substrate, followed by its conversion to BP in a high-pressure multi-anvil cell at room temperature. Raman spectroscopy and transmission electron microscopy measurements confirmed the formation of a nano-crystalline BP thin-film with a thickness of around 40 nm. Optical characterization indicates a bandgap of around 0.28 eV in the converted BP, similar to the bandgap measured in exfoliated thin-films. Thin-film BP transistors exhibit a field-effect mobility of around 0.5 cm2/Vs, which can probably be further enhanced by the optimization of the conversion process at elevated temperatures. Our work opens the avenue for the future demonstration of large-scale, high quality thin-film black phosphorus.
Nature Communications | 2017
Bingchen Deng; Vy Tran; Yujun Xie; Hao Jiang; Cheng Li; Qiushi Guo; Xiaomu Wang; He Tian; Steven J. Koester; Han Wang; Judy J. Cha; Qiangfei Xia; Li Yang; Fengnian Xia
Recently rediscovered black phosphorus is a layered semiconductor with promising electronic and photonic properties. Dynamic control of its bandgap can allow for the exploration of new physical phenomena. However, theoretical investigations and photoemission spectroscopy experiments indicate that in its few-layer form, an exceedingly large electric field in the order of several volts per nanometre is required to effectively tune its bandgap, making the direct electrical control unfeasible. Here we reveal the unique thickness-dependent bandgap tuning properties in intrinsic black phosphorus, arising from the strong interlayer electronic-state coupling. Furthermore, leveraging a 10 nm-thick black phosphorus, we continuously tune its bandgap from ∼300 to below 50 meV, using a moderate displacement field up to 1.1 V nm−1. Such dynamic tuning of bandgap may not only extend the operational wavelength range of tunable black phosphorus photonic devices, but also pave the way for the investigation of electrically tunable topological insulators and semimetals.
Nanoscale | 2016
Marina Mariano; Olha Mashtalir; Francisco Antonio; Won-Hee Ryu; Bingchen Deng; Fengnian Xia; Yury Gogotsi; André D. Taylor
MXenes, a new family of two-dimensional structures, have recently gained significant attention due to their unique physical properties suitable for a wide range of potential applications. Here we introduce Ti3C2Tx delaminated monolayers as ultrathin transparent conductors with properties exceeding comparable reduced graphene oxide films. Solution processed Ti3C2Tx films exhibit sheet resistances as low as 437 Ω sq-1 with 77% transmittance at 550 nm. Field effect transistor measurements confirm that these films have a metallic nature, which makes them suitable as electrodes. We show using Kelvin Probe Atomic Force Microscopy that the work function of delaminated Ti3C2Tx flakes (with OH terminal groups) is 5.28 ± 0.03 eV. These results demonstrate that solution-processed Ti3C2Tx conducting films could open up a new direction for the next generation of transparent conductive electrodes.
Nature Communications | 2017
Xiaolong Chen; Xiaobo Lu; Bingchen Deng; Ofer Sinai; Yuchuan Shao; Cheng Li; Shaofan Yuan; Vy Tran; Kenji Watanabe; Takashi Taniguchi; Doron Naveh; Li Yang; Fengnian Xia
Lately rediscovered orthorhombic black phosphorus (BP) exhibits promising properties for near- and mid-infrared optoelectronics. Although recent electrical measurements indicate that a vertical electric field can effectively reduce its transport bandgap, the impact of the electric field on light-matter interaction remains unclear. Here we show that a vertical electric field can dynamically extend the photoresponse in a 5 nm-thick BP photodetector from 3.7 to beyond 7.7 μm, leveraging the Stark effect. We further demonstrate that such a widely tunable BP photodetector exhibits a peak extrinsic photo-responsivity of 518, 30, and 2.2 mA W−1 at 3.4, 5, and 7.7 μm, respectively, at 77 K. Furthermore, the extracted photo-carrier lifetime indicates a potential operational speed of 1.3 GHz. Our work not only demonstrates the potential of BP as an alternative mid-infrared material with broad optical tunability but also may enable the compact, integrated on-chip high-speed mid-infrared photodetectors, modulators, and spectrometers.The bandgap of ultrathin black phosphorus can be tuned by a vertical electric field. Here, the authors leverage such electric field to extend the photoresponse of a black phosphorus photodetector to 7.7 μm, opening the doors to various mid-infrared applications.
Advanced Materials | 2018
Cheng Li; Ye Wu; Bingchen Deng; Yujun Xie; Qiushi Guo; Shaofan Yuan; Xiaolong Chen; Maruf A. Bhuiyan; Zishan Wu; Kenji Watanabe; Takashi Taniguchi; Hailiang Wang; Judy J. Cha; Michael Snure; Yingwei Fei; Fengnian Xia
Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high-quality few-layer and thin-film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin-film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field-effect mobility of the synthesized BP thin film is found to be around 160 cm2 V-1 s-1 along armchair direction and reaches up to about 200 cm2 V-1 s-1 at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high-quality BP devices and circuits.
Nano Letters | 2018
Shaofan Yuan; Chenfei Shen; Bingchen Deng; Xiaolong Chen; Qiushi Guo; Yuqiang Ma; Ahmad N. Abbas; Bilu Liu; Ralf Haiges; Claudia Ott; Tom Nilges; Kenji Watanabe; Takashi Taniguchi; Ofer Sinai; Doron Naveh; Chongwu Zhou; Fengnian Xia
Layered black phosphorus (BP) has attracted wide attention for mid-infrared photonics and high-speed electronics, due to its moderate band gap and high carrier mobility. However, its intrinsic band gap of around 0.33 electronvolt limits the operational wavelength range of BP photonic devices based on direct interband transitions to around 3.7 μm. In this work, we demonstrate that black arsenic phosphorus alloy (b-As xP1- x) formed by introducing arsenic into BP can significantly extend the operational wavelength range of photonic devices. The as-fabricated b-As0.83P0.17 photodetector sandwiched within hexagonal boron nitride (hBN) shows peak extrinsic responsivity of 190, 16, and 1.2 mA/W at 3.4, 5.0, and 7.7 μm at room temperature, respectively. Moreover, the intrinsic photoconductive effect dominates the photocurrent generation mechanism due to the preservation of pristine properties of b-As0.83P0.17 by complete hBN encapsulation, and these b-As0.83P0.17 photodetectors exhibit negligible transport hysteresis. The broad and large photoresponsivity within mid-infrared resulting from the intrinsic photoconduction, together with the excellent long-term air stability, makes b-As0.83P0.17 alloy a promising alternative material for mid-infrared applications, such as free-space communication, infrared imaging, and biomedical sensing.
Advanced Materials | 2018
Yu Zhou; Jose Luis Silva; John M. Woods; Joshua V. Pondick; Qingliang Feng; Zhixiu Liang; Wen Liu; Li Lin; Bingchen Deng; Barbara Brena; Fengnian Xia; Hailin Peng; Zhongfan Liu; Hailiang Wang; Carlos Moyses Araujo; Judy J. Cha
For the electrochemical hydrogen evolution reaction (HER), the electrical properties of catalysts can play an important role in influencing the overall catalytic activity. This is particularly important for semiconducting HER catalysts such as MoS2 , which has been extensively studied over the last decade. Herein, on-chip microreactors on two model catalysts, semiconducting MoS2 and semimetallic WTe2 , are employed to extract the effects of individual factors and study their relations with the HER catalytic activity. It is shown that electron injection at the catalyst/current collector interface and intralayer and interlayer charge transport within the catalyst can be more important than thermodynamic energy considerations. For WTe2 , the site-dependent activities and the relations of the pure thermodynamics to the overall activity are measured and established, as the microreactors allow precise measurements of the type and area of the catalytic sites. The approach presents opportunities to study electrochemical reactions systematically to help establish rational design principles for future electrocatalysts.
Advanced Materials | 2017
Qiushi Guo; F. Guinea; Bingchen Deng; Ibrahim Sarpkaya; Cheng Li; Chen Chen; Xi Ling; Jing Kong; Fengnian Xia
Graphene plasmons are known to offer an unprecedented level of confinement and enhancement of electromagnetic field. They are hence amenable to interacting strongly with various other excitations (for example, phonons) in their surroundings and are an ideal platform to study the properties of hybrid optical modes. Conversely, the thermally induced motion of particles and quasiparticles can in turn interact with electronic degrees of freedom in graphene, including the collective plasmon modes via the Coulomb interaction, which opens up new pathways to manipulate and control the behavior of these modes. This study demonstrates tunable electrothermal control of coupling between graphene mid-infrared (mid-IR) plasmons and IR active optical phonons in silicon nitride. This study utilizes graphene nanoribbons functioning as both localized plasmonic resonators and local Joule heaters upon application of an external bias. In the latter role, they achieve up to ≈100 K of temperature variation within the device area. This study observes increased modal splitting of two plasmon-phonon polariton hybrid modes with temperature, which is a manifestation of increased plasmon-phonon coupling strength. Additionally, this study also reports on the existence of a thermally excited hybrid plasmon-phonon mode. This work can open the door for future optoelectronic devices such as electrically switchable graphene mid-infrared plasmon sources.
Nature Materials | 2018
Qiushi Guo; Renwen Yu; Cheng Li; Shaofan Yuan; Bingchen Deng; F. Javier García de Abajo; Fengnian Xia
Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into electrical signals can enable important mid-infrared applications. However, the modest thermoelectric coefficient and weak temperature dependence of carrier transport in graphene hinder this goal. Here, we demonstrate mid-infrared graphene detectors consisting of arrays of plasmonic resonators interconnected by quasi-one-dimensional nanoribbons. Localized barriers associated with disorder in the nanoribbons produce a dramatic temperature dependence of carrier transport, thus enabling the electrical detection of plasmon decay in the nearby graphene resonators. Our device has a subwavelength footprint of 5 × 5 μm2 and operates at 12.2 μm with an external responsivity of 16 mA W–1 and a low noise-equivalent power of 1.3 nW Hz–1/2 at room temperature. It is fabricated using large-scale graphene and possesses a simple two-terminal geometry, representing an essential step towards the realization of an on-chip graphene mid-infrared detector array.A system of patterned graphene nanoresonators/nanoribbons can be used as an efficient mid-infrared detector, based on plasmonic resonant absorption and subsequent carrier thermalization.