Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fengnian Xia is active.

Publication


Featured researches published by Fengnian Xia.


conference on lasers and electro optics | 2010

Ultrafast graphene photodetector

Fengnian Xia; Thomas Mueller; Yu-Ming Lin; Phaedon Avouris

We demonstrate ultrafast transistor-based photodetectors made from single- and few-layer graphene. The photoresponse does not degrade for optical intensity modulations up to 40 GHz, and further analysis suggests that the intrinsic bandwidth may exceed 500 GHz.


Nature Photonics | 2010

Graphene photodetectors for high-speed optical communications

Thomas Mueller; Fengnian Xia; Phaedon Avouris

A graphene-based photodetector with unprecedented photoresponsivity and the ability to perform error-free detection of 10 Gbit s−1 data streams is demonstrated. The results suggest that graphene-based photonic devices have a bright future in telecommunications and other optical applications.


Nature Communications | 2014

Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics

Fengnian Xia; Han Wang; Yichen Jia

Graphene and transition metal dichalcogenides (TMDCs) are the two major types of layered materials under intensive investigation. However, the zero-bandgap nature of graphene and the relatively low mobility in TMDCs limit their applications. Here we reintroduce black phosphorus (BP), the most stable allotrope of phosphorus with strong intrinsic in-plane anisotropy, to the layered-material family. For 15-nm-thick BP, we measure a Hall mobility of 1,000 and 600 cm(2)V(-1)s(-1) for holes along the light (x) and heavy (y) effective mass directions at 120 K. BP thin films also exhibit large and anisotropic in-plane optical conductivity from 2 to 5 μm. Field-effect transistors using 5 nm BP along x direction exhibit an on-off current ratio exceeding 10(5), a field-effect mobility of 205 cm(2)V(-1)s(-1), and good current saturation characteristics all at room temperature. BP shows great potential for thin-film electronics, infrared optoelectronics and novel devices in which anisotropic properties are desirable.


Nano Letters | 2010

Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.

Fengnian Xia; Damon B. Farmer; Yu-Ming Lin; Phaedon Avouris

Graphene is considered to be a promising candidate for future nanoelectronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect transistors (FETs) cannot be turned off effectively due to the absence of a band gap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measurements suggest that a band gap up to a few hundred millielectronvolts can be created by the perpendicular E-field in bilayer graphenes. Although previous carrier transport measurements in bilayer graphene transistors did indicate a gate-induced insulating state at temperatures below 1 K, the electrical (or transport) band gap was estimated to be a few millielectronvolts, and the room temperature on/off current ratio in bilayer graphene FETs remains similar to those in single-layer graphene FETs. Here, for the first time, we report an on/off current ratio of around 100 and 2000 at room temperature and 20 K, respectively, in our dual-gate bilayer graphene FETs. We also measured an electrical band gap of >130 and 80 meV at average electric displacements of 2.2 and 1.3 V nm(-1), respectively. This demonstration reveals the great potential of bilayer graphene in applications such as digital electronics, pseudospintronics, terahertz technology, and infrared nanophotonics.


Nature Photonics | 2014

Two-dimensional material nanophotonics

Fengnian Xia; Han Wang; Di Xiao; Madan Dubey; Ashwin Ramasubramaniam

The optical properties of graphene and emerging two-dimensional materials including transition metal dichalcogenides are reviewed with an emphasis on nanophotonic applications. Two-dimensional materials exhibit diverse electronic properties, ranging from insulating hexagonal boron nitride and semiconducting transition metal dichalcogenides such as molybdenum disulphide, to semimetallic graphene. In this Review, we first discuss the optical properties and applications of various two-dimensional materials, and then cover two different approaches for enhancing their interactions with light: through their integration with external photonic structures, and through intrinsic polaritonic resonances. Finally, we present a narrow-bandgap layered material — black phosphorus — that serendipitously bridges the energy gap between the zero-bandgap graphene and the relatively large-bandgap transition metal dichalcogenides. The plethora of two-dimensional materials and their heterostructures, together with the array of available approaches for enhancing the light–matter interaction, offers the promise of scientific discoveries and nanophotonics technologies across a wide range of the electromagnetic spectrum.


Nature Nanotechnology | 2012

Tunable infrared plasmonic devices using graphene/insulator stacks

Hugen Yan; Xuesong Li; Bhupesh Chandra; George S. Tulevski; Yanqing Wu; Marcus Freitag; Wenjuan Zhu; Phaedon Avouris; Fengnian Xia

Superlattices are artificial periodic nanostructures which can control the flow of electrons. Their operation typically relies on the periodic modulation of the electric potential in the direction of electron wave propagation. Here we demonstrate transparent graphene superlattices which can manipulate infrared photons utilizing the collective oscillations of carriers, i.e., plasmons of the ensemble of multiple graphene layers. The superlattice is formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, followed by patterning them all together into 3-dimensional photonic-crystal-like structures. We demonstrate experimentally that the collective oscillation of Dirac fermions in such graphene superlattices is unambiguously nonclassical: compared to doping single layer graphene, distributing carriers into multiple graphene layers strongly enhances the plasmonic resonance frequency and magnitude, which is fundamentally different from that in a conventional semiconductor superlattice. This property allows us to construct widely tunable far-infrared notch filters with 8.2 dB rejection ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a superlattice with merely five graphene atomic layers. Moreover, an unpatterned superlattice shields up to 97.5% of the electromagnetic radiations below 1.2 terahertz. This demonstration also opens an avenue for the realization of other transparent mid- and far-infrared photonic devices such as detectors, modulators, and 3-dimensional meta-material systems.The collective oscillation of carriers--the plasmon--in graphene has many desirable properties, including tunability and low loss. However, in single-layer graphene, the dependence on carrier concentration of both the plasmonic resonance frequency and magnitude is relatively weak, limiting its applications in photonics. Here, we demonstrate transparent photonic devices based on graphene/insulator stacks, which are formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, then patterning them together into photonic-crystal-like structures. We show experimentally that the plasmon in such stacks is unambiguously non-classical. Compared with doping in single-layer graphene, distributing carriers into multiple graphene layers effectively enhances the plasmonic resonance frequency and magnitude, which is different from the effect in a conventional semiconductor superlattice and is a direct consequence of the unique carrier density scaling law of the plasmonic resonance of Dirac fermions. Using patterned graphene/insulator stacks, we demonstrate widely tunable far-infrared notch filters with 8.2 dB rejection ratios and terahertz linear polarizers with 9.5 dB extinction ratios. An unpatterned stack consisting of five graphene layers shields 97.5% of electromagnetic radiation at frequencies below 1.2 THz. This work could lead to the development of transparent mid- and far-infrared photonic devices such as detectors, modulators and three-dimensional metamaterial systems.


Nature | 2011

High-frequency, scaled graphene transistors on diamond-like carbon

Yanqing Wu; Yu-Ming Lin; Ageeth A. Bol; Keith A. Jenkins; Fengnian Xia; Damon B. Farmer; Yu Zhu; Phaedon Avouris

Owing to its high carrier mobility and saturation velocity, graphene has attracted enormous attention in recent years. In particular, high-performance graphene transistors for radio-frequency (r.f.) applications are of great interest. Synthesis of large-scale graphene sheets of high quality and at low cost has been demonstrated using chemical vapour deposition (CVD) methods. However, very few studies have been performed on the scaling behaviour of transistors made from CVD graphene for r.f. applications, which hold great potential for commercialization. Here we report the systematic study of top-gated CVD-graphene r.f. transistors with gate lengths scaled down to 40 nm, the shortest gate length demonstrated on graphene r.f. devices. The CVD graphene was grown on copper film and transferred to a wafer of diamond-like carbon. Cut-off frequencies as high as 155 GHz have been obtained for the 40-nm transistors, and the cut-off frequency was found to scale as 1/(gate length). Furthermore, we studied graphene r.f. transistors at cryogenic temperatures. Unlike conventional semiconductor devices where low-temperature performance is hampered by carrier freeze-out effects, the r.f. performance of our graphene devices exhibits little temperature dependence down to 4.3 K, providing a much larger operation window than is available for conventional devices.


Nature Nanotechnology | 2011

The origins and limits of metal–graphene junction resistance

Fengnian Xia; Vasili Perebeinos; Yu-Ming Lin; Yanqing Wu; Phaedon Avouris

A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 ± 20 Ω µm at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium-graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency.


Nature Nanotechnology | 2015

Highly anisotropic and robust excitons in monolayer black phosphorus

Xiaomu Wang; Aaron M. Jones; Kyle Seyler; Vy Tran; Yichen Jia; Huan Zhao; Han Wang; Li Yang; Xiaodong Xu; Fengnian Xia

Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of ∼0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices.


Nature Photonics | 2013

Damping pathways of mid-infrared plasmons in graphene nanostructures

Hugen Yan; Tony Low; Wenjuan Zhu; Yanqing Wu; Marcus Freitag; Xuesong Li; F. Guinea; Phaedon Avouris; Fengnian Xia

Mid-infrared plasmons in scaled graphene nanostructures Hugen Yan*, Tony Low, Wenjuan Zhu, Yanqing Wu, Marcus Freitag, Xuesong Li, Francisco Guinea, Phaedon Avouris* and Fengnian Xia* IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 Instituto de Ciencia de Materiales de Madrid. CSIC. Sor Juana Inés de la Cruz 3. 28049 Madrid, Spain Plasmonics takes advantage of the collective response of electrons to electromagnetic waves, enabling dramatic scaling of optical devices beyond the diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 μm) plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100 times smaller than the onresonance light wavelength in free space. We reveal, for the first time, the crucial damping channels of graphene plasmons via its intrinsic optical phonons and scattering from the edges. A plasmon lifetime of 20 femto-seconds and smaller is observed, when damping through the emission of an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2 substrate underneath the graphene nanostructures lead to a significantly modified plasmon dispersion and damping, in contrast to a non-polar diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the plasmon resonance frequencies are close to the polar phonon frequencies. Our study paves the way for applications of graphene in plasmonic waveguides, modulators and detectors in an unprecedentedly broad wavelength range from sub-terahertz to mid-infrared.

Collaboration


Dive into the Fengnian Xia's collaboration.

Top Co-Authors

Avatar

Han Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge