Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingfan Du is active.

Publication


Featured researches published by Bingfan Du.


Journal of Medicinal Chemistry | 2011

Identification of a potent, state-dependent inhibitor of Nav1.7 with oral efficacy in the formalin model of persistent pain.

Howard Bregman; Loren Berry; John L. Buchanan; April Chen; Bingfan Du; Elma Feric; Markus Hierl; Liyue Huang; David Immke; Brett Janosky; Danielle Johnson; Xingwen Li; Joseph Ligutti; Dong Liu; Annika B. Malmberg; David J. Matson; Jeff S. McDermott; Peter Miu; Hanh Nho Nguyen; Vinod F. Patel; Daniel Waldon; Ben Wilenkin; Xiao Mei Zheng; Anruo Zou; Erin F. DiMauro

Clinical human genetic studies have recently identified the tetrodotoxin (TTX) sensitive neuronal voltage gated sodium channel Nav1.7 (SCN9A) as a critical mediator of pain sensitization. Herein, we report structure-activity relationships for a novel series of 2,4-diaminotriazines that inhibit hNav1.7. Optimization efforts culminated in compound 52, which demonstrated pharmacokinetic properties appropriate for in vivo testing in rats. The binding site of compound 52 on Nav1.7 was determined to be distinct from that of local anesthetics. Compound 52 inhibited tetrodotoxin-sensitive sodium channels recorded from rat sensory neurons and exhibited modest selectivity against the hERG potassium channel and against cloned and native tetrodotoxin-resistant sodium channels. Upon oral administration to rats, compound 52 produced dose- and exposure-dependent efficacy in the formalin model of pain.


Journal of Organic Chemistry | 2012

Synthesis of 4-substituted chlorophthalazines, dihydrobenzoazepinediones, 2-pyrazolylbenzoic acid, and 2-pyrazolylbenzohydrazide via 3-substituted 3-hydroxyisoindolin-1-ones.

Hanh Nho Nguyen; Victor J. Cee; Holly L. Deak; Bingfan Du; Kathleen Panter Faber; Hakan Gunaydin; Brian L. Hodous; Steven L. Hollis; Paul H. Krolikowski; Philip R. Olivieri; Vinod F. Patel; Karina Romero; Laurie B. Schenkel; Stephanie Geuns-Meyer

Herein we describe a general three-step synthesis of 4-substituted chlorophthalazines in good overall yields. In the key step, N,N-dimethylaminophthalimide (8a) directs the selective monoaddition of alkyl, aryl, and heteroaryl organometallic reagents to afford 3-substituted 3-hydroxyisoindolinones 9b, 9i-9am. Many of these hydroxyisoindolinones are converted to chlorophthalazines 1b-1v via reaction with hydrazine, followed by chlorination with POCl(3). We have also discovered two novel transformations of 3-vinyl- and 3-alkynyl-3-hydroxyisoindolinones. Addition of vinyl organometallic reagents to N,N-dimethylaminophthalimide (8a) provided dihydrobenzoazepinediones 15a-15c via the proposed ring expansion of 3-vinyl-3-hydroxyisoindolinone intermediates. 3-Alkynyl-3-hydroxyisoindolinones react with hydrazine and substituted hydrazines to afford 2-pyrazolyl benzoic acids 16a-16d and 2-pyrazolyl benzohydrazides 17a-17g rather than the expected alkynyl phthalazinones.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery and hit-to-lead optimization of pyrrolopyrimidines as potent, state-dependent Nav1.7 antagonists

Nagasree Chakka; Howie Bregman; Bingfan Du; Hanh Nho Nguyen; John L. Buchanan; Elma Feric; Joseph Ligutti; Dong Liu; Jeff S. McDermott; Anruo Zou; Erin F. DiMauro

Herein we describe the discovery, optimization, and structure-activity relationships of novel potent pyrrolopyrimidine Na(v)1.7 antagonists. Hit-to-lead SAR studies of the pyrrolopyrimidine core, head, and tail groups of the molecule led to the identification of pyrrolopyrimidine 48 as exceptionally potent Na(v)1.7 blocker with good selectivity over hERG and improved microsomal stability relative to our hit molecule and pyrazolopyrimidine 8 as a promising starting point for future optimization efforts.


Journal of Medicinal Chemistry | 2015

Discovery of N-(4-(3-(2-Aminopyrimidin-4-yl)pyridin-2-yloxy)phenyl)-4-(4-methylthiophen-2-yl)phthalazin-1-amine (AMG 900), A Highly Selective, Orally Bioavailable Inhibitor of Aurora Kinases with Activity against Multidrug-Resistant Cancer Cell Lines

Stephanie Geuns-Meyer; Victor J. Cee; Holly L. Deak; Bingfan Du; Brian L. Hodous; Hanh Nho Nguyen; Philip R. Olivieri; Laurie B. Schenkel; Karina R. Vaida; Paul S. Andrews; Annette Bak; Xuhai Be; Pedro J. Beltran; Tammy L. Bush; Mary K. Chaves; Grace Tin-Yun Chung; Yang Dai; Patrick Eden; Kelly Hanestad; Liyue Huang; Min-Hwa Jasmine Lin; Jin Tang; Beth Ziegler; Robert Radinsky; Richard Kendall; Vinod F. Patel; Marc Payton

Efforts to improve upon the physical properties and metabolic stability of Aurora kinase inhibitor 14a revealed that potency against multidrug-resistant cell lines was compromised by increased polarity. Despite its high in vitro metabolic intrinsic clearance, 23r (AMG 900) showed acceptable pharmacokinetic properties and robust pharmacodynamic activity. Projecting from in vitro data to in vivo target coverage was not practical due to disjunctions between enzyme and cell data, complex and apparently contradictory indicators of binding kinetics, and unmeasurable free fraction in plasma. In contrast, it was straightforward to relate pharmacokinetics to pharmacodynamics and efficacy by following the time above a threshold concentration. On the basis of its oral route of administration, a selectivity profile that favors Aurora-driven pharmacology and its activity against multidrug-resistant cell lines, 23r was identified as a potential best-in-class Aurora kinase inhibitor. In phase 1 dose expansion studies with G-CSF support, 23r has shown promising single agent activity.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery and optimization of aminopyrimidinones as potent and state-dependent Nav1.7 antagonists

Hanh Nho Nguyen; Howie Bregman; John L. Buchanan; Bingfan Du; Elma Feric; Liyue Huang; Xingwen Li; Joseph Ligutti; Dong Liu; Annika B. Malmberg; David J. Matson; Jeff S. McDermott; Vinod F. Patel; Ben Wilenkin; Anruo Zou; Erin F. DiMauro

Clinical genetic data have shown that the product of the SCN9A gene, voltage-gated sodium ion channel Nav1.7, is a key control point for pain perception and a possible target for a next generation of analgesics. Sodium channels, however, historically have been difficult drug targets, and many of the existing structure-activity relationships (SAR) have been defined on pharmacologically modified channels with indirect reporter assays. Herein we describe the discovery, optimization, and SAR of potent aminopyrimidinone Nav1.7 antagonists using electrophysiology-based assays that measure the ligand-receptor interaction directly. Within this series, rapid functionalization at the polysubstituted aminopyrimidinone head group enabled exploration of SAR and of pharmacokinetic properties. Lead optimized N-Me-aminopyrimidinone 9 exhibited improved Nav1.7 potency, minimal off-target hERG liability, and improved rat PK properties.


Bioorganic & Medicinal Chemistry Letters | 2017

The discovery of benzoxazine sulfonamide inhibitors of NaV1.7: Tools that bridge efficacy and target engagement

Daniel S. La; Emily A. Peterson; Christiane Bode; Alessandro Boezio; Howard Bregman; Margaret Yuhua Chu-Moyer; James R. Coats; Erin F. DiMauro; Thomas Dineen; Bingfan Du; Hua Gao; Russell Graceffa; Hakan Gunaydin; Angel Guzman-Perez; Robert T. Fremeau; Xin Huang; Christopher P. Ilch; Thomas Kornecook; Charles Kreiman; Joseph Ligutti; Min-Hwa Jasmine Lin; Jeff S. McDermott; Isaac E. Marx; David J. Matson; Bryan D. Moyer; Hanh Nho Nguyen; Kristin Taborn; Violeta Yu; Matthew Weiss

The voltage-gated sodium channel NaV1.7 has received much attention from the scientific community due to compelling human genetic data linking gain- and loss-of-function mutations to pain phenotypes. Despite this genetic validation of NaV1.7 as a target for pain, high quality pharmacological tools facilitate further understanding of target biology, establishment of target coverage requirements and subsequent progression into the clinic. Within the sulfonamide class of inhibitors, reduced potency on rat NaV1.7 versus human NaV1.7 was observed, rendering in vivo rat pharmacology studies challenging. Herein, we report the discovery and optimization of novel benzoxazine sulfonamide inhibitors of human, rat and mouse NaV1.7 which enabled pharmacological assessment in traditional behavioral rodent models of pain and in turn, established a connection between formalin-induced pain and histamine-induced pruritus in mice. The latter represents a simple and efficient means of measuring target engagement.


Bioorganic & Medicinal Chemistry Letters | 2017

Discovery of a biarylamide series of potent, state-dependent NaV1.7 inhibitors

Laurie B. Schenkel; Erin F. DiMauro; Hanh Nho Nguyen; Nagasree Chakka; Bingfan Du; Robert S. Foti; Angel Guzman-Perez; Michael Jarosh; Daniel S. La; Joseph Ligutti; Benjamin C. Milgram; Bryan D. Moyer; Emily A. Peterson; John Roberts; Violeta Yu; Matthew Weiss

The NaV1.7 ion channel has garnered considerable attention as a target for the treatment of pain. Herein we detail the discovery and structure-activity relationships of a novel series of biaryl amides. Optimization led to the identification of several state-dependent, potent and metabolically stable inhibitors which demonstrated promising levels of selectivity over NaV1.5 and good rat pharmacokinetics. Compound 18, which demonstrated preferential inhibition of a slow inactivated state of NaV1.7, was advanced into a rat formalin study where upon reaching unbound drug levels several fold over the rat NaV1.7 IC50 it failed to demonstrate a robust reduction in nociceptive behavior.


Cancer Research | 2010

Abstract 5776: Discovery of AMG 900, a highly selective, orally bioavailable inhibitor of aurora kinases with efficacy in preclinical antitumor models and activity against multidrug-resistant cells

Stephanie Geuns-Meyer; Victor J. Cee; Holly L. Deak; Bingfan Du; Brian L. Hodous; Hanh Nho Nguyen; Philip R. Olivieri; Karina Romero; Laurie B. Schenkel; Vinod F. Patel; Xuhai Be; Tammy L. Bush; Grace Chung; Patrick Eden; Liyue Huang; Richard Kendall; Min-Hwa Jasmine Lin; Robert Radinsky; Beth Ziegler; Marc Payton

The aurora family of serine/threonine kinases (Aurora-A, -B, -C) regulate cell-cycle progression in mammalian cells. Whereas aurora kinase C function appears restricted to meiosis in males, aurora kinases A and B are essential for proper chromosome congression, segregation, and cytokinesis during mitosis. Aurora kinases A and B have been implicated in tumorigenesis, with overexpression levels correlating to clinical staging of cancers and poor prognosis. Thus, these mitotic kinases have become the subject of much interest as targets for anticancer therapy. N-(4-((3-(2-amino-4-pyrimidinyl)-2-pyridinyl)oxy)phenyl)-4-phenyl-1-phthalazinamine was a key aurora kinase inhibitor lead, possessing oral bioavailability in rats that was lacking in the anthranilamide compounds from which it was derived. This phthalazine compound possessed a key feature that was deemed important to maintain in a clinical candidate: potency against a model multidrug resistant (MDR) cell line (MES-SA Dx5) commensurate with its activity against a cell line that does not overexpress P-gp (HeLa). Improved in vivo potency was desired, as measured by suppression of the phosphorylation of the aurora kinase B substrate Histone H3 on Ser10 six hours after dosing. SAR from targeting this improvement in in vivo activity uncovered a delicate balance between protein binding, pharmacokinetic parameters, and cell potency in MES-SA Dx5 cells. AMG 900 was identified as a suitable candidate for clinical development based on its low single digit nanomolar potency against MDR cell lines, robust PD response (with complete suppression of Histone H3 phosphorylation at six hours), and high selectivity against other kinases. Oral administration of AMG 900 at a well-tolerated dose of 4 mg/kg BID inhibited tumor growth (83% TGI; p Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 5776.


ACS Medicinal Chemistry Letters | 2017

Correction to “Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency and Pharmacokinetics to Enable in Vivo Target Engagement”

Isaac E. Marx; Thomas Dineen; Jessica Able; Christiane Bode; Howard Bregman; Margaret Y. Chu-Moyer; Erin F. DiMauro; Bingfan Du; Robert S. Foti; Robert T. Fremeau; Hua Gao; Hakan Gunaydin; Brian E. Hall; Liyue Huang; Thomas Kornecook; Charles Kreiman; Daniel S. La; Joseph Ligutti; Min-Hwa Jasmine Lin; Dong Liu; Jeff S. McDermott; Bryan D. Moyer; Hanh Nho Nguyen; Emily A. Peterson; Jonathan Roberts; Paul Rose; Jean Wang; Beth D. Youngblood; Violeta Yu; Matthew Weiss

[This corrects the article DOI: 10.1021/acsmedchemlett.6b00243.].


Archive | 2008

Aurora kinase modulators and method of use

Victor J. Cee; Holly L. Deak; Bingfan Du; Stephanie Geuns-Meyer; Brian L. Hodous; Hanh Nho Nguyen; Philip R. Olivieri; Vinod F. Patel; Karina Romero; Laurie B. Schenkel

Researchain Logo
Decentralizing Knowledge