Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanh Nho Nguyen is active.

Publication


Featured researches published by Hanh Nho Nguyen.


Cancer Research | 2010

Preclinical Evaluation of AMG 900, a Novel Potent and Highly Selective Pan-Aurora Kinase Inhibitor with Activity in Taxane-Resistant Tumor Cell Lines

Marc Payton; Tammy L. Bush; Grace Tin-Yun Chung; Beth Ziegler; Patrick Eden; Patricia McElroy; Sandra L. Ross; Victor J. Cee; Holly L. Deak; Brian L. Hodous; Hanh Nho Nguyen; Philip R. Olivieri; Karina Romero; Laurie B. Schenkel; Annette Bak; Mary K. Stanton; Isabelle Dussault; Vinod F. Patel; Stephanie Geuns-Meyer; Robert Radinsky; Richard Kendall

In mammalian cells, the aurora kinases (aurora-A, -B, and -C) play essential roles in regulating cell division. The expression of aurora-A and -B is elevated in a variety of human cancers and is associated with high proliferation rates and poor prognosis, making them attractive targets for anticancer therapy. AMG 900 is an orally bioavailable, potent, and highly selective pan-aurora kinase inhibitor that is active in taxane-resistant tumor cell lines. In tumor cells, AMG 900 inhibited autophosphorylation of aurora-A and -B as well as phosphorylation of histone H3 on Ser(10), a proximal substrate of aurora-B. The predominant cellular response of tumor cells to AMG 900 treatment was aborted cell division without a prolonged mitotic arrest, which ultimately resulted in cell death. AMG 900 inhibited the proliferation of 26 tumor cell lines, including cell lines resistant to the antimitotic drug paclitaxel and to other aurora kinase inhibitors (AZD1152, MK-0457, and PHA-739358), at low nanomolar concentrations. Furthermore, AMG 900 was active in an AZD1152-resistant HCT116 variant cell line that harbors an aurora-B mutation (W221L). Oral administration of AMG 900 blocked the phosphorylation of histone H3 in a dose-dependent manner and significantly inhibited the growth of HCT116 tumor xenografts. Importantly, AMG 900 was broadly active in multiple xenograft models, including 3 multidrug-resistant xenograft models, representing 5 tumor types. AMG 900 has entered clinical evaluation in adult patients with advanced cancers and has the potential to treat tumors refractory to anticancer drugs such as the taxanes.


Journal of Medicinal Chemistry | 2011

Identification of a potent, state-dependent inhibitor of Nav1.7 with oral efficacy in the formalin model of persistent pain.

Howard Bregman; Loren Berry; John L. Buchanan; April Chen; Bingfan Du; Elma Feric; Markus Hierl; Liyue Huang; David Immke; Brett Janosky; Danielle Johnson; Xingwen Li; Joseph Ligutti; Dong Liu; Annika B. Malmberg; David J. Matson; Jeff S. McDermott; Peter Miu; Hanh Nho Nguyen; Vinod F. Patel; Daniel Waldon; Ben Wilenkin; Xiao Mei Zheng; Anruo Zou; Erin F. DiMauro

Clinical human genetic studies have recently identified the tetrodotoxin (TTX) sensitive neuronal voltage gated sodium channel Nav1.7 (SCN9A) as a critical mediator of pain sensitization. Herein, we report structure-activity relationships for a novel series of 2,4-diaminotriazines that inhibit hNav1.7. Optimization efforts culminated in compound 52, which demonstrated pharmacokinetic properties appropriate for in vivo testing in rats. The binding site of compound 52 on Nav1.7 was determined to be distinct from that of local anesthetics. Compound 52 inhibited tetrodotoxin-sensitive sodium channels recorded from rat sensory neurons and exhibited modest selectivity against the hERG potassium channel and against cloned and native tetrodotoxin-resistant sodium channels. Upon oral administration to rats, compound 52 produced dose- and exposure-dependent efficacy in the formalin model of pain.


Bioorganic & Medicinal Chemistry Letters | 2009

Pyridyl-pyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of Tie-2 kinase.

Victor J. Cee; Alan C. Cheng; Karina Romero; Steve Bellon; Christopher Mohr; Douglas A. Whittington; Annette Bak; James Bready; Sean Caenepeel; Angela Coxon; Holly L. Deak; Jenne Fretland; Yan Gu; Brian L. Hodous; Xin Huang; Joseph L. Kim; Jasmine Lin; Alexander M. Long; Hanh Nho Nguyen; Philip R. Olivieri; Vinod F. Patel; Ling Wang; Yihong Zhou; Paul E. Hughes; Stephanie Geuns-Meyer

Selective small molecule inhibitors of Tie-2 kinase are important tools for the validation of Tie-2 signaling in pathological angiogenesis. Reported herein is the optimization of a nonselective scaffold into a potent and highly selective inhibitor of Tie-2 kinase.


Journal of Medicinal Chemistry | 2010

Discovery of a potent, selective, and orally bioavailable pyridinyl-pyrimidine phthalazine aurora kinase inhibitor.

Victor J. Cee; Laurie B. Schenkel; Brian L. Hodous; Holly L. Deak; Hanh Nho Nguyen; Philip R. Olivieri; Karina Romero; Annette Bak; Xuhai Be; Steve Bellon; Tammy L. Bush; Alan C. Cheng; Grace Chung; Steve Coats; Patrick Eden; Kelly Hanestad; Paul Gallant; Yan Gu; Xin Huang; Richard Kendall; Min-Hwa Jasmine Lin; Michael Morrison; Vinod F. Patel; Robert Radinsky; Paul Rose; Sandra Ross; Ji-Rong Sun; Jin Tang; Huilin Zhao; Marc Payton

The discovery of aurora kinases as essential regulators of cell division has led to intense interest in identifying small molecule aurora kinase inhibitors for the potential treatment of cancer. A high-throughput screening effort identified pyridinyl-pyrimidine 6a as a moderately potent dual inhibitor of aurora kinases -A and -B. Optimization of this hit resulted in an anthranilamide lead (6j) that possessed improved enzyme and cellular activity and exhibited a high level of kinase selectivity. However, this anthranilamide and subsequent analogues suffered from a lack of oral bioavailability. Converting the internally hydrogen-bonded six-membered pseudo-ring of the anthranilamide to a phthalazine (8a-b) led to a dramatic improvement in oral bioavailability (38-61%F) while maintaining the potency and selectivity characteristics of the anthranilamide series. In a COLO 205 tumor pharmacodynamic assay measuring phosphorylation of the aurora-B substrate histone H3 at serine 10 (p-histone H3), oral administration of 8b at 50 mg/kg demonstrated significant reduction in tumor p-histone H3 for at least 6 h.


Journal of Organic Chemistry | 2012

Synthesis of 4-substituted chlorophthalazines, dihydrobenzoazepinediones, 2-pyrazolylbenzoic acid, and 2-pyrazolylbenzohydrazide via 3-substituted 3-hydroxyisoindolin-1-ones.

Hanh Nho Nguyen; Victor J. Cee; Holly L. Deak; Bingfan Du; Kathleen Panter Faber; Hakan Gunaydin; Brian L. Hodous; Steven L. Hollis; Paul H. Krolikowski; Philip R. Olivieri; Vinod F. Patel; Karina Romero; Laurie B. Schenkel; Stephanie Geuns-Meyer

Herein we describe a general three-step synthesis of 4-substituted chlorophthalazines in good overall yields. In the key step, N,N-dimethylaminophthalimide (8a) directs the selective monoaddition of alkyl, aryl, and heteroaryl organometallic reagents to afford 3-substituted 3-hydroxyisoindolinones 9b, 9i-9am. Many of these hydroxyisoindolinones are converted to chlorophthalazines 1b-1v via reaction with hydrazine, followed by chlorination with POCl(3). We have also discovered two novel transformations of 3-vinyl- and 3-alkynyl-3-hydroxyisoindolinones. Addition of vinyl organometallic reagents to N,N-dimethylaminophthalimide (8a) provided dihydrobenzoazepinediones 15a-15c via the proposed ring expansion of 3-vinyl-3-hydroxyisoindolinone intermediates. 3-Alkynyl-3-hydroxyisoindolinones react with hydrazine and substituted hydrazines to afford 2-pyrazolyl benzoic acids 16a-16d and 2-pyrazolyl benzohydrazides 17a-17g rather than the expected alkynyl phthalazinones.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery and hit-to-lead optimization of pyrrolopyrimidines as potent, state-dependent Nav1.7 antagonists

Nagasree Chakka; Howie Bregman; Bingfan Du; Hanh Nho Nguyen; John L. Buchanan; Elma Feric; Joseph Ligutti; Dong Liu; Jeff S. McDermott; Anruo Zou; Erin F. DiMauro

Herein we describe the discovery, optimization, and structure-activity relationships of novel potent pyrrolopyrimidine Na(v)1.7 antagonists. Hit-to-lead SAR studies of the pyrrolopyrimidine core, head, and tail groups of the molecule led to the identification of pyrrolopyrimidine 48 as exceptionally potent Na(v)1.7 blocker with good selectivity over hERG and improved microsomal stability relative to our hit molecule and pyrazolopyrimidine 8 as a promising starting point for future optimization efforts.


Bioorganic & Medicinal Chemistry Letters | 2012

The discovery of aminopyrazines as novel, potent Nav1.7 antagonists: Hit-to-lead identification and SAR

Howard Bregman; Hanh Nho Nguyen; Elma Feric; Joseph Ligutti; Dong Liu; Jeff S. McDermott; Ben Wilenkin; Anruo Zou; Liyue Huang; Xingwen Li; Erin F. DiMauro

Herein the discovery of a novel class of aminoheterocyclic Na(v)1.7 antagonists is reported. Hit compound 1 was potent but suffered from poor pharmacokinetics and selectivity. The compact structure of 1 offered a modular synthetic strategy towards a broad structure-activity relationship analysis. This analysis led to the identification of aminopyrazine 41, which had vastly improved hERG selectivity and pharmacokinetic properties.


Journal of Medicinal Chemistry | 2017

Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency and Pharmacokinetics While Mitigating Metabolic Liabilities

Matthew Weiss; Thomas Dineen; Isaac E. Marx; Steven Altmann; Alessandro Boezio; Howard Bregman; Margaret Y. Chu-Moyer; Erin F. DiMauro; Elma Feric Bojic; Robert S. Foti; Hua Gao; Russell Graceffa; Hakan Gunaydin; Angel Guzman-Perez; Hongbing Huang; Liyue Huang; Michael Jarosh; Thomas Kornecook; Charles Kreiman; Joseph Ligutti; Daniel S. La; Min-Hwa Jasmine Lin; Dong Liu; Bryan D. Moyer; Hanh Nho Nguyen; Emily A. Peterson; Paul Rose; Kristin Taborn; Beth D. Youngblood; Violeta Yu

Several reports have recently emerged regarding the identification of heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. The optimization of a series of internal NaV1.7 leads that address a number of metabolic liabilities including bioactivation, PXR activation, as well as CYP3A4 induction and inhibition led to the identification of potent and selective inhibitors that demonstrated favorable pharmacokinetic profiles and were devoid of the aforementioned liabilities. The key to achieving this within a series prone to transporter-mediated clearance was the identification of a small range of optimal cLogD values and the discovery of subtle PXR SAR that was not lipophilicity dependent. This enabled the identification of compound 20, which was advanced into a target engagement pharmacodynamic model where it exhibited robust reversal of histamine-induced scratching bouts in mice.


Journal of Medicinal Chemistry | 2017

Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency, Pharmacokinetics, and Metabolic Properties to Obtain Atropisomeric Quinolinone (AM-0466) that Affords Robust in Vivo Activity

Russell Graceffa; Alessandro Boezio; Jessica Able; Steven Altmann; Loren Berry; Christiane Boezio; John R. Butler; Margaret Y. Chu-Moyer; Melanie Cooke; Erin F. DiMauro; Thomas Dineen; Elma Feric Bojic; Robert S. Foti; Robert T. Fremeau; Angel Guzman-Perez; Hua Gao; Hakan Gunaydin; Hongbing Huang; Liyue Huang; Christopher P. Ilch; Michael Jarosh; Thomas Kornecook; Charles Kreiman; Daniel S. La; Joseph Ligutti; Benjamin C. Milgram; Min-Hwa Jasmine Lin; Isaac E. Marx; Hanh Nho Nguyen; Emily A. Peterson

Because of its strong genetic validation, NaV1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [ Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation . WO 2014201206, 2014 ] of NaV1.7, which demonstrate nanomolar inhibition of NaV1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound 39 (AM-0466) demonstrated robust pharmacodynamic activity in a NaV1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity.


Journal of Medicinal Chemistry | 2015

Discovery of N-(4-(3-(2-Aminopyrimidin-4-yl)pyridin-2-yloxy)phenyl)-4-(4-methylthiophen-2-yl)phthalazin-1-amine (AMG 900), A Highly Selective, Orally Bioavailable Inhibitor of Aurora Kinases with Activity against Multidrug-Resistant Cancer Cell Lines

Stephanie Geuns-Meyer; Victor J. Cee; Holly L. Deak; Bingfan Du; Brian L. Hodous; Hanh Nho Nguyen; Philip R. Olivieri; Laurie B. Schenkel; Karina R. Vaida; Paul S. Andrews; Annette Bak; Xuhai Be; Pedro J. Beltran; Tammy L. Bush; Mary K. Chaves; Grace Tin-Yun Chung; Yang Dai; Patrick Eden; Kelly Hanestad; Liyue Huang; Min-Hwa Jasmine Lin; Jin Tang; Beth Ziegler; Robert Radinsky; Richard Kendall; Vinod F. Patel; Marc Payton

Efforts to improve upon the physical properties and metabolic stability of Aurora kinase inhibitor 14a revealed that potency against multidrug-resistant cell lines was compromised by increased polarity. Despite its high in vitro metabolic intrinsic clearance, 23r (AMG 900) showed acceptable pharmacokinetic properties and robust pharmacodynamic activity. Projecting from in vitro data to in vivo target coverage was not practical due to disjunctions between enzyme and cell data, complex and apparently contradictory indicators of binding kinetics, and unmeasurable free fraction in plasma. In contrast, it was straightforward to relate pharmacokinetics to pharmacodynamics and efficacy by following the time above a threshold concentration. On the basis of its oral route of administration, a selectivity profile that favors Aurora-driven pharmacology and its activity against multidrug-resistant cell lines, 23r was identified as a potential best-in-class Aurora kinase inhibitor. In phase 1 dose expansion studies with G-CSF support, 23r has shown promising single agent activity.

Researchain Logo
Decentralizing Knowledge