Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Binghua Hao is active.

Publication


Featured researches published by Binghua Hao.


Clinical Infectious Diseases | 2012

Performance of Candida Real-time Polymerase Chain Reaction, β-D-Glucan Assay, and Blood Cultures in the Diagnosis of Invasive Candidiasis

M. Hong Nguyen; Mark C. Wissel; Ryan K. Shields; Martin Salomoni; Binghua Hao; Ellen G. Press; Ryan M. Shields; Shaoji Cheng; Dimitra Mitsani; Aniket Vadnerkar; Fernanda P. Silveira; Steven B. Kleiboeker; Cornelius J. Clancy

BACKGROUND The sensitivity of blood cultures for diagnosing invasive candidiasis (IC) is poor. METHODS We performed a validated Candida real-time polymerase chain reaction (PCR) and the Fungitell 1,3-β-D-glucan (BDG) assay on blood samples collected from prospectively identified patients with IC (n = 55) and hospitalized controls (n = 73). Patients with IC had candidemia (n = 17), deep-seated candidiasis (n = 33), or both (n = 5). Controls had mucosal candidiasis (n = 5), Candida colonization (n = 48), or no known Candida colonization (n = 20). RESULTS PCR using plasma or sera was more sensitive than whole blood for diagnosing IC (P = .008). Plasma or sera PCR was more sensitive than BDG in diagnosing IC (80% vs 56%; P = .03), with comparable specificity (70% vs 73%; P = .31). The tests were similar in diagnosing candidemia (59% vs 68%; P = .77), but PCR was more sensitive for deep-seated candidiasis (89% vs 53%; P = .004). PCR and BDG were more sensitive than blood cultures among patients with deep-seated candidiasis (88% and 62% vs 17%; P = .0005 and .003, respectively). PCR and culture identified the same Candida species in 82% of patients. The sensitivity of blood cultures combined with PCR or BDG among patients with IC was 98% and 79%, respectively. CONCLUSIONS Candida PCR and, to a lesser extent, BDG testing significantly enhanced the ability of blood cultures to diagnose IC.


Antimicrobial Agents and Chemotherapy | 2013

Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis

Binghua Hao; Shaoji Cheng; Cornelius J. Clancy; M. Hong Nguyen

ABSTRACT Caspofungin exerts candidacidal activity by inhibiting cell wall (1,3)-β-d-glucan synthesis. We investigated the physiologic mechanisms of caspofungin-induced Candida albicans cell death. Apoptosis (programmed cell death) and necrosis were studied after C. albicans SC5314 cells were exposed to caspofungin at 0.06, 0.125, and 0.5 μg/ml (0.5×, 1×, and 4× the MIC, respectively) for 3 h. Caspofungin at 0.125 and 0.5 μg/ml reduced cellular viability by >50%, as measured by colony counts and methylene blue exclusion. Apoptosis and necrosis were demonstrated by annexin V and propidium iodide staining for phosphatidylserine externalization and loss of membrane integrity, respectively. At all concentrations of caspofungin, 20 to 25% and 5 to 7% of C. albicans cells exhibited early apoptosis and late apoptosis/necrosis, respectively (P value was not significant [NS]). Necrosis, on the other hand, was significantly greater at 0.125 (43%) and 0.5 (48%) μg/ml than at 0.06 μg/ml (26%) (P values of 0.003 and 0.003, respectively). The induction of apoptosis at concentrations less than or equal to the MIC was corroborated by dihydrorhodamine 123 (DHR-123) and dihydroethidium (DHE) staining (reactive oxygen species production), JC-1 staining (mitochondrial membrane potential dissipation), and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining (DNA damage and nuclear fragmentation). Moreover, electron microscopy of cells exposed to 0.125 μg/ml of caspofungin showed hallmark apoptotic features like chromatin margination and condensation and nuclear blebs. Apoptosis was associated with metacaspase 1 activation, as demonstrated by D2R staining. Caspofungin exerts activity against C. albicans by directly killing cells (resulting in necrosis) and causing others to undergo programmed cell death (apoptosis). Apoptosis is initiated at subinhibitory concentrations, suggesting that strategies to target this process may augment the benefits of antifungal agents.


Antimicrobial Agents and Chemotherapy | 2014

Carbapenem-Resistant Klebsiella pneumoniae Strains Exhibit Diversity in Aminoglycoside-Modifying Enzymes, Which Exert Differing Effects on Plazomicin and Other Agents

Reem Almaghrabi; Cornelius J. Clancy; Yohei Doi; Binghua Hao; Liang Chen; Ryan K. Shields; Ellen G. Press; Nicole M. Iovine; Bethany M. Townsend; Marilyn M. Wagener; Barry N. Kreiswirth; M. Hong Nguyen

ABSTRACT We measured in vitro activity of plazomicin, a next-generation aminoglycoside, and other aminoglycosides against 50 carbapenem-resistant Klebsiella pneumoniae strains from two centers and correlated the results with the presence of various aminoglycoside-modifying enzymes (AMEs). Ninety-four percent of strains were sequence type 258 (ST258) clones, which exhibited 5 ompK36 genotypes; 80% and 10% of strains produced Klebsiella pneumoniae carbapenemase 2 (KPC-2) and KPC-3, respectively. Ninety-eight percent of strains possessed AMEs, including AAC(6′)-Ib (98%), APH(3′)-Ia (56%), AAC(3)-IV (38%), and ANT(2″)-Ia (2%). Gentamicin, tobramycin, and amikacin nonsusceptibility rates were 40, 98, and 16%, respectively. Plazomicin MICs ranged from 0.25 to 1 μg/ml. Tobramycin and plazomicin MICs correlated with gentamicin MICs (r = 0.75 and 0.57, respectively). Plazomicin exerted bactericidal activity against 17% (1× MIC) and 94% (4× MIC) of strains. All strains with AAC(6′)-Ib were tobramycin-resistant; 16% were nonsusceptible to amikacin. AAC(6′)-Ib combined with another AME was associated with higher gentamicin, tobramycin, and plazomicin MICs than AAC(6′)-Ib alone (P = 0.01, 0.0008, and 0.046, respectively). The presence of AAC(3)-IV in a strain was also associated with higher gentamicin, tobramycin, and plazomicin MICs (P = 0.0006, P < 0.0001, and P = 0.01, respectively). The combination of AAC(6′)-Ib and another AME, the presence of AAC(3)-IV, and the presence of APH(3′)-Ia were each associated with gentamicin resistance (P = 0.0002, 0.003, and 0.01, respectively). In conclusion, carbapenem-resistant K. pneumoniae strains (including ST258 clones) exhibit highly diverse antimicrobial resistance genotypes and phenotypes. Plazomicin may offer a treatment option against strains resistant to other aminoglycosides. The development of molecular assays that predict antimicrobial responses among carbapenem-resistant K. pneumoniae strains should be a research priority.


Antimicrobial Agents and Chemotherapy | 2013

Mutations of the ompK36 Porin Gene and Promoter Impact Responses of Sequence Type 258, KPC-2-Producing Klebsiella pneumoniae Strains to Doripenem and Doripenem-Colistin

Cornelius J. Clancy; Liang Chen; Jae H. Hong; Shaoji Cheng; Binghua Hao; Ryan K. Shields; Annie N. Farrell; Yohei Doi; Yanan Zhao; David S. Perlin; Barry N. Kreiswirth; M. Hong Nguyen

ABSTRACT Doripenem-colistin exerts synergy against some, but not all, Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains in vitro. We determined if doripenem MICs and/or ompK36 porin gene mutations impacted the responses of 23 sequence type 258 (ST258), KPC-2-producing strains to the combination of doripenem (8 μg/ml) and colistin (2 μg/ml) during time-kill assays. The median doripenem and colistin MICs were 32 and 4 μg/ml. Doripenem MICs did not correlate with KPC-2 expression levels. Five and 18 strains had wild-type and mutant ompK36, respectively. The most common mutations were IS5 promoter insertions (n = 7) and insertions encoding glycine and aspartic acid at amino acid (aa) positions 134 and 135 (ins aa134-135 GD; n = 8), which were associated with higher doripenem MICs than other mutations or wild-type ompK36 (all P values ≤ 0.04). Bactericidal activity (24 h) was achieved by doripenem-colistin against 12%, 43%, and 75% of ins aa134-135 GD, IS5, and wild-type/other mutants, respectively (P = 0.04). Doripenem-colistin was more active in time-kill studies than colistin at 12 and 24 h if the doripenem MIC was ≤8 μg/ml (P = 0.0007 and 0.09, respectively), but not if the MIC was >8 μg/ml (P = 0.10 and 0.16). Likewise, doripenem-colistin was more active at 12 and 24 h against the wild type/other mutants than ins aa134-135 GD or IS5 mutants (P = 0.007 and 0.0007). By multivariate analysis, the absence of ins aa134-135 GD or IS5 mutations was the only independent predictor of doripenem-colistin responses at 24 h (P = 0.002). In conclusion, ompK36 genotypes identified ST258 KPC-K. pneumoniae strains that were most likely to respond to doripenem-colistin.


Antimicrobial Agents and Chemotherapy | 2015

Effects of Klebsiella pneumoniae Carbapenemase Subtypes, Extended-Spectrum β-Lactamases, and Porin Mutations on the In Vitro Activity of Ceftazidime-Avibactam against Carbapenem-Resistant K. pneumoniae

Ryan K. Shields; Cornelius J. Clancy; Binghua Hao; Liang Chen; Ellen G. Press; Nicole M. Iovine; Barry N. Kreiswirth; M. Hong Nguyen

ABSTRACT Avibactam is a novel β-lactamase inhibitor with affinity for Klebsiella pneumoniae carbapenemases (KPCs). In combination with ceftazidime, the agent demonstrates activity against KPC-producing K. pneumoniae (KPC-Kp). KPC-Kp strains are genetically diverse and harbor multiple resistance determinants, including defects in outer membrane proteins and extended-spectrum β-lactamases (ESBLs). Mutations in porin gene ompK36 confer high-level carbapenem resistance to KPC-Kp strains. Whether specific mechanisms of antimicrobial resistance also influence the activity of ceftazidime-avibactam is unknown. We defined the effects of ceftazidime-avibactam against 72 KPC-Kp strains with diverse mechanisms of resistance, including various combinations of KPC subtypes and ESBL and ompK36 mutations. Ceftazidime MICs ranged from 64 to 4,096 μg/ml and were lowered by a median of 512-fold with the addition of avibactam. All strains exhibited ceftazidime-avibactam MICs at or below the CLSI breakpoint for ceftazidime (≤4 μg/ml; range, 0.25 to 4). However, the MICs were within two 2-fold dilutions of the CLSI breakpoint against 24% of the strains, and those strains would be classified as nonsusceptible to ceftazidime by EUCAST criteria (MIC > 1 μg/ml). Median ceftazidime-avibactam MICs were higher against KPC-3 than KPC-2 variants (P = 0.02). Among KPC-2-Kp strains, the presence of both ESBL and porin mutations was associated with higher drug MICs compared to those seen with either factor alone (P = 0.003 and P = 0.02, respectively). In conclusion, ceftazidime-avibactam displays activity against genetically diverse KPC-Kp strains. Strains with higher-level drug MICs provide a reason for caution. Judicious use of ceftazidime-avibactam alone or in combination with other agents will be important to prevent the emergence of resistance.


Antimicrobial Agents and Chemotherapy | 2016

Evaluation of the In Vitro Activity of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Meropenem-Resistant Pseudomonas aeruginosa Isolates

Deanna J. Buehrle; Ryan K. Shields; Liang Chen; Binghua Hao; Ellen G. Press; Ammar Alkrouk; Brian A. Potoski; Barry N. Kreiswirth; Cornelius J. Clancy; M. Hong Nguyen

ABSTRACT We compared ceftazidime-avibactam, ceftolozane-tazobactam, ceftazidime, cefepime, and piperacillin-tazobactam MICs for 38 meropenem-resistant Pseudomonas aeruginosa isolates. No isolates harbored carbapenemases; 74% were oprD mutants. Ceftazidime-avibactam and ceftolozane-tazobactam were active against 92% of the isolates, including 80% that were resistant to all three β-lactams. Forty-three percent of ceftazidime-avibactam-susceptible isolates and 6% of ceftolozane-tazobactam-susceptible isolates exhibited MICs at the respective breakpoints. Ceftolozane-tazobactam and ceftazidime-avibactam are therapeutic options for meropenem-resistant P. aeruginosa infections that should be used judiciously to preserve activity.


Clinical Infectious Diseases | 2017

Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance

Ghady Haidar; Nathan J Philips; Ryan K. Shields; Daniel Snyder; Shaoji Cheng; Brian A. Potoski; Yohei Doi; Binghua Hao; Ellen G. Press; Vaughn S. Cooper; Cornelius J. Clancy; M. Hong Nguyen

We collected data on 1054 children admitted to Ebola Holding Units in Sierra Leone and describe outcomes of 697/1054 children testing negative for Ebola virus disease (EVD) and accompanying caregivers. Case-fatality was 9%; 3/630(0.5%) children discharged testing negative were readmitted EVD-positive. Nosocomial EVD transmission risk may be lower than feared.We collected data on 1054 children admitted to Ebola Holding Units in Sierra Leone and describe outcomes of 697/1054 children testing negative for Ebola virus disease (EVD) and accompanying caregivers. Case-fatality was 9%; 3/630(0.5%) children discharged testing negative were readmitted EVD-positive. Nosocomial EVD transmission risk may be lower than feared.Background Data on the use of ceftolozane-tazobactam and emergence of ceftolozane-tazobactam resistance during multidrug resistant (MDR)-Pseudomonas aeruginosa infections are limited. Methods We performed a retrospective study of 21 patients treated with ceftolozane-tazobactam for MDR-P. aeruginosa infections. Whole genome sequencing and quantitative real-time polymerase chain reaction were performed on longitudinal isolates. Results Median age was 58 years; 9 patients (43%) were transplant recipients. Median simplified acute physiology score-II (SAPS-II) was 26. Eighteen (86%) patients were treated for respiratory tract infections; others were treated for bloodstream, complicated intraabdominal infections, or complicated urinary tract infections. Ceftolozane-tazobactam was discontinued in 1 patient (rash). Thirty-day all-cause and attributable mortality rates were 10% (2/21) and 5% (1/21), respectively; corresponding 90-day mortality rates were 48% (10/21) and 19% (4/21). The ceftolozane-tazobactam failure rate was 29% (6/21). SAPS-II score was the sole predictor of failure. Ceftolozane-tazobactam resistance emerged in 3 (14%) patients. Resistance was associated with de novo mutations, rather than acquisition of resistant nosocomial isolates. ampC overexpression and mutations were identified as potential resistance determinants. Conclusions In this small study, ceftolozane-tazobactam was successful in treating 71% of patients with MDR-P. aeruginosa infections, most of whom had pneumonia. The emergence of ceftolozane-tazobactam resistance in 3 patients is worrisome and may be mediated in part by AmpC-related mechanisms. More research on treatment responses and resistance during various types of MDR-P. aeruginosa infections is needed to define ceftolozane-tazobactams place in the armamentarium.


Cellular Microbiology | 2007

Uncoupling of oxidative phosphorylation enables Candida albicans to resist killing by phagocytes and persist in tissue

Shaoji Cheng; Cornelius J. Clancy; Zongde Zhang; Binghua Hao; Wei Wang; Kenneth A. Iczkowski; Michael A. Pfaller; M. Hong Nguyen

After five serial passages of Candida albicans SC5314 through murine spleens by intravenous inoculation, we recovered a respiratory mutant (strain P5) that exhibited reduced colony size, stunted growth in glucose‐deficient media, increased oxygen consumption and defective carbohydrate assimilation. Strain P5 was indistinguishable from SC5314 by DNA typing methods, but had a greater concentration of mitochondria by SYTO18 staining. Treatment with various inhibitors demonstrated that strain P5s electron transport chain was intact and oxidative phosphorylation was uncoupled. During disseminated candidiasis, the mutant did not kill mice or cause extensive damage to kidneys. The burden of strain P5 within kidneys on the first 3 days of disseminated candidiasis was significantly reduced. By days 28 and 60, it was similar to that at the time of death among mice infected with SC5314, suggesting that the mutant persisted and proliferated without killing mice. Strain P5 was resistant to phagocytosis by neutrophils and macrophages. It was also significantly more resistant to paraquat, suggesting that it is able to neutralize reactive oxygen species. Our findings indicate that regulation of respiration influences the interaction between C. albicans and the host. Uncoupling of oxidative phosphorylation might be a mechanism by which the organism adapts to stressful host environments.


The Journal of Infectious Diseases | 2013

Profiling of Candida albicans Gene Expression During Intra-abdominal Candidiasis Identifies Biologic Processes Involved in Pathogenesis

Shaoji Cheng; Cornelius J. Clancy; Wenjie Xu; Frank Schneider; Binghua Hao; Aaron P. Mitchell; M. Hong Nguyen

BACKGROUND The pathogenesis of intra-abdominal candidiasis is poorly understood. METHODS Mice were intraperitoneally infected with Candida albicans (1 × 10(6) colony-forming units) and sterile stool. nanoString assays were used to quantitate messenger RNA for 145 C. albicans genes within the peritoneal cavity at 48 hours. RESULTS Within 6 hours after infection, mice developed peritonitis, characterized by high yeast burdens, neutrophil influx, and a pH of 7.9 within peritoneal fluid. Organ invasion by hyphae and early abscess formation were evident 6 and 24 hours after infection, respectively; abscesses resolved by day 14. nanoString assays revealed adhesion and responses to alkaline pH, osmolarity, and stress as biologic processes activated in the peritoneal cavity. Disruption of the highly-expressed gene RIM101, which encodes an alkaline-regulated transcription factor, did not impact cellular morphology but reduced both C. albicans burden during early peritonitis and C. albicans persistence within abscesses. RIM101 influenced expression of 49 genes during intra-abdominal candidiasis, including previously unidentified Rim101 targets. Overexpression of the RIM101-dependent gene SAP5, which encodes a secreted protease, restored the ability of a rim101 mutant to persist within abscesses. CONCLUSIONS A mouse model of intra-abdominal candidiasis is valuable for studying pathogenesis and C. albicans gene expression. RIM101 contributes to persistence within intra-abdominal abscesses, at least in part through activation of SAP5.


Eukaryotic Cell | 2009

Candida albicans RFX2 Encodes a DNA Binding Protein Involved in DNA Damage Responses, Morphogenesis, and Virulence

Binghua Hao; Cornelius J. Clancy; Shaoji Cheng; Suresh Babu Raman; Kenneth A. Iczkowski; M. H. Nguyen

ABSTRACT We previously showed that Candida albicans orf19.4590, which we have renamed RFX2, expresses a protein that is reactive with antibodies in persons with candidiasis. In this study, we demonstrate that C. albicans RFX2 shares some functional redundancy with Saccharomyces cerevisiae RFX1. Complementation of an S. cerevisiae rfx1 mutant with C. albicans RFX2 partially restored UV susceptibility and the repression of DNA damage response genes. DNA damage- and UV-induced genes RAD6 and DDR48 were derepressed in a C. albicans rfx2 null mutant strain under basal conditions, and the mutant was significantly more resistant to UV irradiation, heat shock, and ethanol than wild-type strain SC5314. The rfx2 mutant was hyperfilamentous on solid media and constitutively expressed hypha-specific genes HWP1, ALS3, HYR1, ECE1, and CEK1. The mutant also demonstrated increased invasion of solid agar and significantly increased adherence to human buccal epithelial cells. During hematogenously disseminated candidiasis, mice infected with the mutant had a significantly delayed time to death compared to the wild type. During oropharyngeal candidiasis, mice infected with the mutant had significantly lower tissue burdens in the oral cavity and esophagus at 7 days and they were less likely to develop disseminated infections because of mucosal translocation. The data demonstrate that C. albicans Rfx2p regulates DNA damage responses, morphogenesis, and virulence.

Collaboration


Dive into the Binghua Hao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Hong Nguyen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Shaoji Cheng

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry N. Kreiswirth

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Ellen G. Press

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohei Doi

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ghady Haidar

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge