Bingyong Han
Beijing University of Chemical Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bingyong Han.
Colloid and Polymer Science | 2014
Xuee Li; Jianmin Lu; Wantai Yang; Zhifeng Fu; Bingyong Han
An unsymmetrical triphenylethane, ethane-1,1,2-triyltribenzene (ETB), was successfully prepared from phenyl lithium, trans-1,2-diphenylethylene, and methanol. Characterization of the compound was performed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR). The polymerization of methyl methacrylate (MMA) was performed in the presence of ETB at 85xa0°C or higher. The free radicals obtained were characterized by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS). Gel permeation chromatography (GPC) traces of the average molecular weight of poly(MMA) (PMMA) showed a series of translations with increasing time. The average molecular weight of PMMA indicated narrow polydispersity, and a linear relationship was found between ln([M]0/[M]) and polymerization time. These results indicated the “living” nature of the polymerization of MMA in the presence of ETB. The structure of ETB was also introduced to the end of polystyrene (PS), polyisoprene (PI), and polyisoprene-b-polystyrene (PIS) chains which were obtained by living anionic polymerization. Hence, they initiated radical polymerization of MMA as ETB-end-macroinitiators to obtain block copolymers. Thus, living anionic polymerization and this radical polymerization method were combined together to prepare block copolymers without the intermediate transformation step.
Colloid and Polymer Science | 2014
Xuee Li; Jianmin Lu; Wantai Yang; Bingyong Han
AbstractAn unsymmetrical compound, 2,2,3-triphenylpropanoic acid (TPPA), was successfully prepared from phenyllithium, 1,1-diphenylethylene (DPE), gas carbon dioxide (CO2), and aqueous standard solution of hydrochloric acid with LiCl deprivation. Characterization of the compound was performed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The polymerization of methyl methacrylate (MMA) was performed in the presence of TPPA at 95xa0°C. The free radicals obtained were characterized by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS). Gel permeation chromatography (GPC) traces of the average molecular weight of poly(MMA) (PMMA) showed a series of translations with increasing time. The average molecular weight of PMMA indicated narrow polydispersity, and an approximately linear relationship was found between ln ([M]0/[M]) and polymerization time.n Figureᅟ
Macromolecular Rapid Communications | 2018
Yang Cai; Jianmin Lu; Danlin Zuo; Shihui Li; Dongmei Cui; Bingyong Han; Wantai Yang
A simple approach to synthesize extremely high glass transition temperature (Tgxa0>xa0300xa0°C) hydrocarbon polymers that introduces bridged cyclic backbone and bulky pendant group simultaneously is reported. This method uses highly 3,4-regulated poly(phenyl-1,3-butadiene) as a prepolymer for cationic cyclization postmodification. The Tg of cyclized highly 3,4-regulated (94.0%) poly(1-phenyl-1,3-butadiene) (P(1-PB)) can reach 304xa0°C. To further restrict the movement of bridged cyclic backbone by changing the position of the pendant substituent group, highly 3,4-regulated (96.2%) poly(2-phenyl-1,3-butadiene) (P(2-PB)) is used as the prepolymer. The Tg of its cyclized product reaches 325 °C, and this value is the highest ever reported among all hydrocarbon polymers. The results indicate that the regularity of poly(phenyl-1,3-butadiene) and the pendant substituent group are crucial factors when synthesizing high-temperature hydrocarbon polymers through this approach.
Designed Monomers and Polymers | 2017
Minglu Huang; Bingyong Han; Jianmin Lu; Wantai Yang; Zhifeng Fu
Abstract Well-controlled anionic polymerization of an initiator-functionalized monomer, p-(2,2′-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n-BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES-b-PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.
Designed Monomers and Polymers | 2017
Minglu Huang; Jianmin Lu; Bingyong Han; Xianhong Zhang; Wantai Yang
Abstract In this paper, we present a tandem anionic-radical approach for synthesizing hypergrafted polymers. We prepared 4-(N,N-diphenylamino)methylstyrene (DPAMS) as a new radical-based inimer. Linear PDPAMS was prepared through anionic polymerization. Hypergrafted PDPAMS was synthesized through the self-condensing vinyl polymerization of DPAMS with linear PDPAMS. The linear backbone of PDPAMS, which incorporated latent radical initiating sites, served as a ‘hyperlinker’ to link hyperbranched side chains. The molecular weights of hypergrafted polymers increased as the length of the linear backbone chain increased. The hypergrafted structure of the resulting polymer was confirmed using a conventional gel permeation chromatograph apparatus equipped with a multiangle light scattering detector, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This strategy can be applied to synthesize other complex architectures based on hyperbranched polymers by changing the structure of a polymer backbone through anionic polymerization.
Macromolecules | 2006
† Wei-Ping Gao; Yu Bai; Er-Qiang Chen; Zi-Chen Li; Bingyong Han; ‡ and Wan-Tai Yang; Qi-Feng Zhou
Polymer | 2008
Yu Bai; † Wei-Ping Gao; Jingjing Yan; Yu-Guo Ma; Dehai Liang; Zi-Chen Li; Bingyong Han; Wantai Yang; Er-Qiang Chen
Polymer | 2012
Fengtian Shi; Jun Ling; Jianmin Lu; Bingyong Han; Li Liu; Thieo E. Hogen-Esch
Archive | 2007
Bingyong Han; Fengtian Shi; Jianmin Lu; Wanchun Yang
Macromolecules | 2017
Yang Cai; Jianmin Lu; Gaifeng Jing; Wantai Yang; Bingyong Han