Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingzhang Chen is active.

Publication


Featured researches published by Bingzhang Chen.


Aquatic Ecology | 2010

Grazing and growth responses of a marine oligotrichous ciliate fed with two nanoplankton: does food quality matter for micrograzers?

Bingzhang Chen; Hongbin Liu; Macy T. S. Lau

To investigate whether predator growth and grazing would depend on prey properties besides size, we studied the numerical and functional responses of a marine oligotrichous ciliate isolated in Hong Kong coastal waters, Strobilidium sp., on two nanoplanktonic preys of similar size. The growth and ingestion rates of Strobilidium sp. could be fit with prey concentrations by hyperbolic curves. Strobilidium sp. exhibited higher maximal growth rates and gross growth efficiencies, and lower maximal clearance rates on Nannochloropsis sp. than on Isochrysis galbana. Our results demonstrate that prey properties presumably food quality can have a considerable effect on predator growth and grazing and implications on phytoplankton community structure and biogeochemical cycling.


Environmental Microbiology Reports | 2014

Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong.

Hongbin Liu; Hongmei Jing; Thomas Wong; Bingzhang Chen

Phylogenetic diversity of Synechococcus with different pigmentation in subtropical estuarine and coastal waters of Hong Kong was revealed by the phylogeny of cpcBA and cpeBA operons encoding for phycocyanin (PC) and phycoerythrin (PE). Synechococcus containing only PC (PC-rich Synechococcus) dominated at the estuarine station in summer, whereas PE-rich marine Synechococcus containing both PC and PE (PE-rich Synechococcus) dominated in the coastal waters. Our PC sequences are closely related to freshwater strains but differed from Baltic Sea strains, implying that they were from river discharge. Among PE-rich Synechococcus, clones grouping with strains containing only phycoerythrobilin (PEB-only) were abundant in July, while clones grouping with strains possessing a low content of phycourobilin (PUB) in addition to PEB (low PUB/PEB) were more abundant in January at both stations. Clones of high PUB/PEB types were only presented at the coastal station, but were not detected at the estuarine station. The much higher diversity of both PC-rich and PE-rich Synechococcus, as compared with the Baltic Sea, and the occurrence of the high PUB/PEB strains indicate the high dynamic nature of this subtropical estuarine-coastal environment with strong mixing of water masses ranging from Pearl River plume to oceanic South China Sea water. Our results of phylogenetic study agreed well with flow cytometric counts, which revealed the coexistence of PC-rich and PE-rich Synechococcus in the subtropical coastal waters and the dominance of the former type in the estuarine waters during summer high freshwater discharge. These results indicate that picocyanobacteria, particularly PC-rich Synechococcus, which has long been overlooked, are an important part of the primary production, and they could play an important role in the microbial food web in estuarine ecosystems.


PLOS ONE | 2016

Physical-Biological Coupling in the Western South China Sea: The Response of Phytoplankton Community to a Mesoscale Cyclonic Eddy.

Lei Wang; Bangqin Huang; Kuo-Ping Chiang; Xin Liu; Bingzhang Chen; Yuyuan Xie; Yanping Xu; Jianyu Hu; Minhan Dai

It is widely recognized that the mesoscale eddies play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic eddy in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the eddy center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the eddy center to the surrounding water outside the eddy. However the TChl a biomass in the surface layer (at 5 m) in the eddy center was promoted 2.6-fold compared to the biomass outside the eddy (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the eddy was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the eddy, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the eddy center under the effect of nutrient pumping. The doming isopycnal within the eddy supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in eddy center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the surface layer.


Water Research | 2018

Warming and eutrophication combine to restructure diatoms and dinoflagellates

Wupeng Xiao; Xin Liu; Andrew J. Irwin; Edward A. Laws; Lei Wang; Bingzhang Chen; Yang Zeng; Bangqin Huang

Temperature change and eutrophication are known to affect phytoplankton communities, but relatively little is known about the effects of interactions between simultaneous changes of temperature and nutrient loading in coastal ecosystems. Here we show that such interaction is key in driving diatom-dinoflagellate dynamics in the East China Sea. Diatoms and dinoflagellates responded differently to temperature, nutrient concentrations and ratios, and their interactions. Diatoms preferred lower temperature and higher nutrient concentrations, while dinoflagellates were less sensitive to temperature and nutrient concentrations, but tended to prevail at low phosphorus and high N:P ratio conditions. These different traits of diatoms and dinoflagellates resulted in the fact that both the effect of warming resulting in nutrients decline as a consequence of increasing stratification and the effect of increasing terrestrial nutrient input as a result of eutrophication might promote dinoflagellates over diatoms. We predict that conservative forecasts of environmental change by the year 2100 are likely to result in the decrease of diatoms in 60% and the increase of dinoflagellates in 70% of the surface water of the East China Sea, and project that mean diatoms should decrease by 19% while mean dinoflagellates should increase by 60% in the surface water of the coastal East China Sea. This analysis is based on a series of statistical niche models of the consequences of multiple environmental changes on diatom and dinoflagellate biomass in the East China Sea based on 2815 samples randomly collected from 23 cruises spanning 14 years (2002-2015). Our findings reveal that dinoflagellate blooms will be more frequent and intense, which will affect coastal ecosystem functioning.


Acta Oceanologica Sinica | 2014

The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production

Bingzhang Chen; Bangqin Huang; Yuyuan Xie; Cui Guo; Shuqun Song; Hongbo Li; Hongbin Liu

The East China Sea is a productive marginal sea with a wide continental shelf and plays an important role in absorbing atmospheric carbon dioxide and transferring terrigenous organic matter to the open ocean. To investigate the roles of heterotrophic bacteria in the biogeochemical dynamics in the East China Sea, bacterial biomasses (BB) and productions (BP) were measured in four cruises. The spatial distributions of the BB and the BP were highly season-dependent. Affected by the Changjiang River discharge, the BB and the BP were high in shelf waters (bottom depth not deeper than 50 m) and generally decreased offshore in August 2009. In December 2009 to January 2010, and November to December 2010, the BB and the BP were high in waters with medium bottom depth. The onshore-offshore decreasing trends of the BB and the BP also existed in May–June 2011, when the BB was significantly higher than in other cruises in shelf break waters (bottom depth deeper than 50 m but not deeper than 200 m). The results of generalized additive models (GAM) suggest that the BB increased with the temperature at a range of 8–20°C, increased with the chlorophyll concentration at a range of 0.02–3.00 mg/m3 and then declining, and decreased with the salinity from 28 to 35. The relationship between the temperature and the log-transformed bacterial specific growth rate (SGR) was linear. The estimated temperature coefficient (Q10) of the SGR was similar with that of the phytoplankton growth. The SGR also increased with the chlorophyll concentration. The ratio of the bacterial to phytoplankton production ranged from less than 0.01 to 0.40, being significantly higher in November- December 2010 than in May–June 2011. Calculated from the bacterial production and growth efficiency, the bacterial respiration consumed, on average, 59%, 72% and 23% of the primary production in August 2009, November–December 2010, and May–June 2011, respectively.


Frontiers in Marine Science | 2017

Seasonal Variability of Mesozooplankton Feeding Rates on Phytoplankton in Subtropical Coastal and Estuarine Waters

Mianrun Chen; Hongbin Liu; Bingzhang Chen

In order to understand how mesozooplankton assemblages influenced phytoplankton in coastal and estuarine waters, we carried out a monthly investigation on mesozooplankton composition at two contrasting stations of Hong Kong coastal and estuarine waters and simultaneously conducted bottle incubation feeding experiments. The assemblage of mesozooplankton was omnivorous at both stations with varying carnivory degree (the degree of feeding preference of protozoa and animal food to phytoplankton) and the variations of carnivory degree were significantly associated with microzooplankton biomass (ciliates for the coastal station, both ciliates and dinoflagellates for the estuarine stations) and physical environmental parameters (primarily salinity). High carnivory was primarily due to high composition of noctilucales, Corycaeus spp., Oithona spp. and Acartia spp. Results of feeding experiments showed that grazing impacts on phytoplankton ranged from -5.9% to 17.7%, while the mean impacts were just less than 4% at both stations. The impacts were size-dependent, by which mesozooplankton consumed around 9% of large-sized phytoplankton while indirectly caused an increase of 4% of small-sized phytoplankton. Mesozooplankton clearance rate on phytoplankton, calculated from the log response of chlorophyll a concentrations by the introduction of bulk grazers after one-day incubation, was significantly reduced by increasing carnivory degree of the mesozooplankton assemblage. The mechanism for the reduction of mesozooplankton clearance rate with increasing carnivory degree was primarily due to less efficient of filtering feeding and stronger trophic cascades due to suppression of microzooplankton. The feeding rates of mesozooplankton on microzooplankton were not obtained in this study, but the trophic cascades indirectly induced by mesozooplankton carnivorous feeding can be observed by the negative clearance rate on small-sized phytoplankton. Overall, the main significance of this study is the empirical relationship between carnivory degree and clearance rate, which allow researchers to potentially predict the herbivory of mesozooplankton in the nature without conducting feeding experiments.


Science of The Total Environment | 2018

Effects of increasing atmospheric CO 2 on the marine phytoplankton and bacterial metabolism during a bloom: A coastal mesocosm study

Yibin Huang; Xin Liu; Edward A. Laws; Bingzhang Chen; Yan Li; Yuyuan Xie; Yaping Wu; Kunshan Gao; Bangqin Huang

Increases of atmospheric CO2 concentrations due to human activity and associated effects on aquatic ecosystems are recognized as an environmental issue at a global scale. Growing attention is being paid to CO2 enrichment effects under multiple stresses or fluctuating environmental conditions in order to extrapolate from laboratory-scale experiments to natural systems. We carried out a mesocosm experiment in coastal water with an assemblage of three model phytoplankton species and their associated bacteria under the influence of elevated CO2 concentrations. Net community production and the metabolic characteristics of the phytoplankton and bacteria were monitored to elucidate how these organisms responded to CO2 enrichment during the course of the algal bloom. We found that CO2 enrichment (1000μatm) significantly enhanced gross primary production and the ratio of photosynthesis to chlorophyll a by approximately 38% and 39%, respectively, during the early stationary phase of the algal bloom. Although there were few effects on bulk bacterial production, a significant decrease of bulk bacterial respiration (up to 31%) at elevated CO2 resulted in an increase of bacterial growth efficiency. The implication is that an elevation of CO2 concentrations leads to a reduction of bacterial carbon demand and enhances carbon transfer efficiency through the microbial loop, with a greater proportion of fixed carbon being allocated to bacterial biomass and less being lost as CO2. The contemporaneous responses of phytoplankton and bacterial metabolism to CO2 enrichment increased net community production by about 45%, an increase that would have profound implications for the carbon cycle in coastal marine ecosystems.


Limnology and Oceanography | 2010

Relationships between phytoplankton growth and cell size in surface oceans: Interactive effects of temperature, nutrients, and grazing

Bingzhang Chen; Hongbin Liu


Limnology and Oceanography | 2009

Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea

Bingzhang Chen; Hongbin Liu; Michael R. Landry; Minhan Dai; Bangqin Huang; Jun Sune


Limnology and Oceanography | 2012

Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean

Bingzhang Chen; Michael R. Landry; Bangqin Huang; Hongbin Liu

Collaboration


Dive into the Bingzhang Chen's collaboration.

Top Co-Authors

Avatar

Hongbin Liu

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuqun Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward A. Laws

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Mianrun Chen

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge