Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xin Liu is active.

Publication


Featured researches published by Xin Liu.


Journal of Biomedical Materials Research Part A | 2010

Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation

Qiang Fu; Mohamed N. Rahaman; Hailuo Fu; Xin Liu

Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3.


Journal of Controlled Release | 2009

Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin.

Zongping Xie; Xin Liu; Wei-Tao Jia; Changqing Zhang; Wenhai Huang; Jian-Qiang Wang

The effectiveness of a degradable and bioactive borate glass has been compared with the clinically used calcium sulfate in the treatment of osteomyelitis of rabbits, as a carrier for vancomycin. The bone infections were induced in the tibias of 65 rabbits by injecting methicillin-resistant Staphylococcus aureus (MRSA). After 3 weeks, these rabbits were distributed into 4 groups and treated by debridement. Pure borate glass (BG), vancomycin-loaded calcium sulfate (VCS) and vancomycin-loaded borate glass (VBG) were implanted into the infection sites of groups 2 to 4 respectively. After 8 weeks, the effectiveness of treatment was assessed radiographically, bacteriologically, and histopathologically. The results showed that the negative rates of MRSA examination for rabbits were 36.36%, 18.18%, 73.33% and 81.25% respectively for groups 1 to 4. Significant differences were observed radiographically, bacteriologically, and histopathologically between groups 1 and 4, groups 2 and 3, and between groups 2 and 4. The best result of treatment was observed in group 4. Radiographically, VBG was found to be mostly reabsorbed and replaced by lots of new bones, whereas, VCS was completely reabsorbed and replaced by modest new bones. Histopathologically, there were lots of newly formed bones around VBG without any foreign body response, and only modest new bones around VCS with obvious foreign body response. VBG proved to have excellent biocompatibility and to be very effective in eradicating osteomyelitis and simultaneously stimulating bone regeneration, avoiding the disadvantages of VCS.


Acta Biomaterialia | 2013

Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair

Xin Liu; Mohamed N. Rahaman; Gregory E. Hilmas; B. Sonny Bal

There is a need to develop synthetic scaffolds to repair large defects in load-bearing bones. Bioactive glasses have attractive properties as a scaffold material for bone repair, but data on their mechanical properties are limited. The objective of the present study was to comprehensively evaluate the mechanical properties of strong porous scaffolds of silicate 13-93 bioactive glass fabricated by robocasting. As-fabricated scaffolds with a grid-like microstructure (porosity 47%, filament diameter 330μm, pore width 300μm) were tested in compressive and flexural loading to determine their strength, elastic modulus, Weibull modulus, fatigue resistance, and fracture toughness. Scaffolds were also tested in compression after they were immersed in simulated body fluid (SBF) in vitro or implanted in a rat subcutaneous model in vivo. As fabricated, the scaffolds had a strength of 86±9MPa, elastic modulus of 13±2GPa, and a Weibull modulus of 12 when tested in compression. In flexural loading the strength, elastic modulus, and Weibull modulus were 11±3MPa, 13±2GPa, and 6, respectively. In compression, the as-fabricated scaffolds had a mean fatigue life of ∼10(6) cycles when tested in air at room temperature or in phosphate-buffered saline at 37°C under cyclic stresses of 1-10 or 2-20MPa. The compressive strength of the scaffolds decreased markedly during the first 2weeks of immersion in SBF or implantation in vivo, but more slowly thereafter. The brittle mechanical response of the scaffolds in vitro changed to an elasto-plastic response after implantation for longer than 2-4weeks in vivo. In addition to providing critically needed data for designing bioactive glass scaffolds, the results are promising for the application of these strong porous scaffolds in loaded bone repair.


Biomaterials | 2010

Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model

Xin Zhang; Wei-Tao Jia; Yifei Gu; Wei Xiao; Xin Liu; Deping Wang; Changqing Zhang; Wenhai Huang; Mohamed N. Rahaman; Delbert E. Day; Nai Zhou

The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis.


Acta Biomaterialia | 2013

Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects

Xin Liu; Mohamed N. Rahaman; Qiang Fu

There is a need for synthetic bone graft substitutes to repair large bone defects resulting from trauma, malignancy and congenital diseases. Bioactive glass has attractive properties as a scaffold material but factors that influence its ability to regenerate bone in vivo are not well understood. In the present work, the ability of strong porous scaffolds of 13-93 bioactive glass with an oriented microstructure to regenerate bone was evaluated in vivo using a rat calvarial defect model. Scaffolds with an oriented microstructure of columnar pores (porosity=50%; pore diameter=50-150 μm) showed mostly osteoconductive bone regeneration, and new bone formation, normalized to the available pore area (volume) of the scaffolds, increased from 37% at 12 weeks to 55% at 24 weeks. Scaffolds of the same glass with a trabecular microstructure (porosity=80%; pore width=100-500 μm), used as the positive control, showed bone regeneration in the pores of 25% and 46% at 12 and 24 weeks, respectively. The brittle mechanical response of the as-fabricated scaffolds changed markedly to an elastoplastic response in vivo at both implantation times. These results indicate that both groups of 13-93 bioactive glass scaffolds could potentially be used to repair large bone defects, but scaffolds with the oriented microstructure could also be considered for the repair of loaded bone.


Journal of Materials Science: Materials in Medicine | 2009

Bioactive borosilicate glass scaffolds: in vitro degradation and bioactivity behaviors

Xin Liu; Wenhai Huang; Hailuo Fu; Aihua Yao; Deping Wang; Haobo Pan; William W. Lu; Xinquan Jiang; Xiuli Zhang

Bioactive borosilicate glass scaffolds with the pores of several hundred micrometers and a competent compressive strength were prepared through replication method. The inxa0vitro degradation and bioactivity behaviors of the scaffolds have been investigated by immersing the scaffolds statically in diluted phosphate solution at 37°C, up to 360xa0h. To monitor the degradation progress of the scaffolds, the amount of leaching elements from the scaffolds were determined by ICP-AES. The XRD and SEM results reveal that, during the degradation of scaffolds, the borosilicate scaffolds converted to hydroxyapatite. The compressive strength of the scaffolds decreased during degradation, in the way that can be well predicted by the degradation products, or the leachates, from the scaffolds. MTT assay results demonstrate that the degradation products have little, if any, inhibition effect on the cell proliferation, when diluted to a certain concentration ([B] <2.690 and pH value at neutral level). The study shows that borosilicate glass scaffold could be a promising candidate for bone tissue engineering material.


Acta Biomaterialia | 2011

Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response

Xin Liu; Mohamed N. Rahaman; Qiang Fu

Scaffolds of 13-93 bioactive glass (composition 6.0 Na₂O, 7.9 K₂O, 7.7 MgO, 22.1 CaO, 1.7 P₂O₅, 54.6 SiO₂ (mol.%)) containing oriented pores of controllable diameter were prepared by unidirectional freezing of camphene-based suspensions (10 vol.% particles) on a cold substrate (-196 °C or 3 °C). By varying the annealing time (0-72 h) to coarsen the camphene phase, constructs with the same porosity (86 ± 1%) but with controllable pore diameters (15-160 μm) were obtained after sublimation of the camphene. The pore diameters had a self-similar distribution that could be fitted by a diffusion-controlled coalescence model. Sintering (1 h at 690 °C) was accompanied by a decrease in porosity and pore diameter, the magnitude of which depended on the pore size of the green constructs, giving scaffolds with a porosity of 20-60% and average pore diameter of 6-120 μm. The compressive stress vs. deformation response of the sintered scaffolds in the orientation direction was linear, followed by failure. The compressive strength and elastic modulus in the orientation direction varied from 180 MPa and 25 GPa (porosity=20%) to 16 MPa and 4 GPa (porosity=60%), respectively, which were 2-3 times larger than the values in the direction perpendicular to the orientation. The potential use of these 13-93 bioactive glass scaffolds for the repair of large defects in load-bearing bones, such as segmental defects in long bones, is discussed.


Journal of Materials Science: Materials in Medicine | 2009

Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering

Xin Liu; Wenhai Huang; Hailuo Fu; Aihua Yao; Deping Wang; Haobo Pan; William W. Lu

Three-dimensional macroporous scaffolds with the pore size of 200–500xa0μm were fabricated by replication method using bioactive borosilicate glass from Na2O–K2O–MgO–CaO–SiO2–P2O5–B2O3 system. The effects of the strength of the strut in reticulated scaffold, as well as the geometrical parameter of the scaffold on the strength of reticulated scaffold were investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the solidified glass struts in the reticulated scaffold could be obtained through a sufficient vicious flow of glass, during the fabrication. By increasing the solid content in slurries, from which the scaffold was made, the load-bearing units of the reticulated scaffold switch from struts to the walls between the pores, and the compressive strength dramatically climbs higher than the theoretical strength calculated by Gibson model. In particular, the compressive strength of the reticulated scaffold, as high as ~10xa0MPa with the porosity of ~70%, is close to the reported compressive values of human cancellous bone. This indicates the bioactive borosilicate glass-based scaffold is a promising candidate for bone tissue engineering.


Acta Biomaterialia | 2010

Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis.

Wei-Tao Jia; Xin Zhang; Shihua Luo; Xin Liu; Wenhai Huang; Mohamed N. Rahaman; Delbert E. Day; Changqing Zhang; Zongping Xie; Jian-Qiang Wang

Composite materials composed of borate bioactive glass and chitosan (designated BGC) were investigated in vitro and in vivo as a new delivery system for teicoplanin in the treatment of chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA). In vitro, the release of teicoplanin from BGC pellets into phosphate-buffered saline (PBS), as well as its antibacterial activity, were determined. The compressive strength of the pellets was measured after specific immersion times, and the structure of the pellets was characterized using scanning electron microscopy and X-ray diffraction. In vivo, the tibial cavity of New Zealand White rabbits was injected with MRSA strain to induce chronic osteomyelitis, treated by debridement after 4weeks, implanted with teicoplanin-loaded BGC pellets (designated TBGC) or BGC pellets, or injected intravenously with teicoplanin. After 12weeks implantation, the efficacy of the TBGC pellets for treating osteomyelitis was evaluated using hematological, radiological, microbiological and histological techniques. When immersed in PBS, the TBGC pellets provided a sustained release of teicoplanin, while the surface of the pellets was converted to hydroxyapatite (HA). In vivo, the best therapeutic effect was observed in animals implanted with TBGC pellets, resulting in significantly lower radiological and histological scores, a lower positive rate of MRSA culture, and an excellent bone defect repair, without local or systemic side effects. The results indicate that TBGC pellets are effective in treating chronic osteomyelitis by providing a sustained release of teicoplanin, in addition to participating in bone regeneration.


Acta Biomaterialia | 2013

Effect of Bioactive Borate Glass Microstructure on Bone Regeneration, Angiogenesis, and Hydroxyapatite Conversion in a Rat Calvarial Defect Model

Lianxiang Bi; Mohamed N. Rahaman; Delbert E. Day; Zackary Brown; Christopher Samujh; Xin Liu; Ali Mohammadkhah; Vladimir Dusevich; J. David Eick; Lynda F. Bonewald

Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair.

Collaboration


Dive into the Xin Liu's collaboration.

Top Co-Authors

Avatar

Mohamed N. Rahaman

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Delbert E. Day

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Qiang Fu

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changqing Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynda F. Bonewald

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge