Bipasha Barua
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bipasha Barua.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Bipasha Barua; Melissa C. Pamula; Sarah E. Hitchcock-DeGregori
Tropomyosin (Tm) is a two-chained, α-helical coiled-coil protein that associates end-to-end to form a continuous strand along actin filaments and regulates the functions and stability of actin in eukaryotic muscle and nonmuscle cells. Mutations in Tm cause skeletal and cardiac myopathies. We applied a neoteric molecular evolution approach to gain insight into the fundamental unresolved question of what makes the Tm coiled coil an actin binding protein. We carried out a phylogenetic analysis of 70 coding sequences of Tm genes from 26 animal species, from cnidarians to chordates, and evaluated the substitution rates (ω) at individual codons to identify conserved sites. The most conserved residues at surface b, c, f heptad repeat positions were mutated in rat striated muscle αTm and expressed in Escherichia coli. Each mutant had 3–4 sites mutated to Ala within the first half or the second half of periods 2–6. Actin affinity and thermodynamic stability were determined in vitro. Mutations in the first half of periods 2, 4, and 5 resulted in the largest reduction in actin affinity (> 4-fold), indicating these mutations include residues in actin-binding sites. Mutations in the second half of the periods had a ≤ 2-fold effect on affinity indicating these residues may be involved in other conserved regulatory functions. The structural relevance of these results was assessed by constructing molecular models for the actin-Tm filament. Molecular evolution analysis is a general approach that may be used to identify potential binding sites of a protein for a conserved protein.
Journal of Biological Chemistry | 2013
Bipasha Barua; Patricia M. Fagnant; Donald A. Winkelmann; Kathleen M. Trybus; Sarah E. Hitchcock-DeGregori
Background: The interface of actin with tropomyosin, the universal regulator of the actin filament, is unknown. Results: Mutagenesis of actin and tropomyosin revealed a pattern of residues required for complex formation in the closed state. Conclusion: The results support models of the actin-tropomyosin filament in the absence of myosin and troponin. Significance: A validated actin-tropomyosin model is required to understand regulation and disease mechanisms. Actin filament cytoskeletal and muscle functions are regulated by actin binding proteins using a variety of mechanisms. A universal actin filament regulator is the protein tropomyosin, which binds end-to-end along the length of the filament. The actin-tropomyosin filament structure is unknown, but there are atomic models in different regulatory states based on electron microscopy reconstructions, computational modeling of actin-tropomyosin, and docking of atomic resolution structures of tropomyosin to actin filament models. Here, we have tested models of the actin-tropomyosin interface in the “closed state” where tropomyosin binds to actin in the absence of myosin or troponin. Using mutagenesis coupled with functional analyses, we determined residues of actin and tropomyosin required for complex formation. The sites of mutations in tropomyosin were based on an evolutionary analysis and revealed a pattern of basic and acidic residues in the first halves of the periodic repeats (periods) in tropomyosin. In periods P1, P4, and P6, basic residues are most important for actin affinity, in contrast to periods P2, P3, P5, and P7, where both basic and acidic residues or predominantly acidic residues contribute to actin affinity. Hydrophobic interactions were found to be relatively less important for actin binding. We mutated actin residues in subdomains 1 and 3 (Asp25-Glu334-Lys326-Lys328) that are poised to make electrostatic interactions with the residues in the repeating motif on tropomyosin in the models. Tropomyosin failed to bind mutant actin filaments. Our mutagenesis studies provide the first experimental support for the atomic models of the actin-tropomyosin interface.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Bipasha Barua; Donald A. Winkelmann; Howard D. White; Sarah E. Hitchcock-DeGregori
Cooperative activation of actin-myosin interaction by tropomyosin (Tm) is central to regulation of contraction in muscle cells and cellular and intracellular movements in nonmuscle cells. The steric blocking model of muscle regulation proposed 40 y ago has been substantiated at both the kinetic and structural levels. Even with atomic resolution structures of the major players, how Tm binds and is designed for regulatory function has remained a mystery. Here we show that a set of periodically distributed evolutionarily conserved surface residues of Tm is required for cooperative regulation of actomyosin. Based on our results, we propose a model of Tm on a structure of actin-Tm-myosin in the “open” (on) state showing potential electrostatic interactions of the residues with both actin and myosin. The sites alternate with a second set of conserved surface residues that are important for actin binding in the inhibitory state in the absence of myosin. The transition from the closed to open states requires the sites identified here, even when troponin + Ca2+ is present. The evolutionarily conserved residues are important for actomyosin regulation, a universal function of Tm that has a common structural basis and mechanism.
Biochemistry | 2014
Bipasha Barua; Attila Nagy; James R. Sellers; Sarah E. Hitchcock-DeGregori
The actin cytoskeleton carries out cellular functions, including division, migration, adhesion, and intracellular transport, that require a variety of actin binding proteins, including myosins. Our focus here is on class II nonmuscle myosin isoforms, NMIIA, NMIIB, and NMIIC, and their regulation by the actin binding protein, tropomyosin. NMII myosins are localized to different populations of stress fibers and the contractile ring, structures involved in force generation required for cell migration, adhesion, and cytokinesis. The stress fibers and contractile ring that contain NMII myosins also contain tropomyosin. Four mammalian genes encode more than 40 tropomyosins. Tropomyosins inhibit or activate actomyosin MgATPase and motility depending on the myosin and tropomyosin isoform. In vivo, tropomyosins play a role in cell migration, adhesion, cytokinesis, and NMII isoform localization in an isoform-specific manner. We postulate that the isoform-specific tropomyosin localization and effect on NMII isoform localization reflect modulation of NMII actomyosin kinetics and motile function. In this study, we compare the ability of different tropomyosin isoforms to support actin filament motility with NMIIA, NMIIB, and NMIIC as well as skeletal muscle myosin. Tropomyosins activated, inhibited, or had no effect on motility depending on the myosin, indicating that the myosin isoform is the primary determinant of the isoform-specific effect of tropomyosin on actomyosin regulation. Activation of motility of nonmuscle tropomyosin–actin filaments by NMII myosin correlates with an increased Vmax of the myosin MgATPase, implying a direct effect on the myosin MgATPase, in contrast to the skeletal tropomyosin–actin filament that has no effect on the Vmax or maximal filament velocity.
Biophysical Journal | 2013
Wenjun Zheng; Bipasha Barua; Sarah E. Hitchcock-DeGregori
Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments.
PLOS ONE | 2013
Susanne Cranz-Mileva; Melissa C. Pamula; Bipasha Barua; Brinda Desai; Yaejee Hannah Hong; Jacquelyn Russell; Richard Trent; Jianqiu Wang; Nancy C. Walworth; Sarah E. Hitchcock-DeGregori
Tropomyosin, a coiled-coil protein that binds along the length of the actin filament, is a universal regulator of the actin cytoskeleton. We have taken a bioinformatics/proteomic approach to studying structure-function relationships in this protein. The presence of a single, essential tropomyosin gene, cdc8, in fission yeast, Schizosaccharomyces pombe, enables a systems-based approach to define the residues that are important for cellular functions. Using molecular evolution methodologies we identified the most conserved residues and related them to the coiled coil structure. Mutants in which one or more of 21 of the most conserved surface residues was mutated to Ala were tested for the ability to rescue growth of a temperature-sensitive cdc8 mutant when overexpressed at the restrictive temperature. Based on altered morphology of the septum and actin cytoskeleton, we selected three sets of mutations for construction of mutant cdc8 strains using marker reconstitution mutagenesis and analysis of recombinant protein in vitro: D16A.K30A, V114S.E117A.H118A and R121A.D131A.E138A. The mutations have sequence-specific effects on cellular morphology including cell length, organization of cytoskeletal structures (actin patches, actin cables and contractile rings), and in vitro actin affinity, lending credence to the proteomic approach introduced here. We propose that bioinformatics is a valid analysis tool for defining structure-function relationships in conserved proteins in this model organism.
Sub-cellular biochemistry | 2017
Sarah E. Hitchcock-DeGregori; Bipasha Barua
Tropomyosin is the archetypal-coiled coil, yet studies of its structure and function have proven it to be a dynamic regulator of actin filament function in muscle and non-muscle cells. Here we review aspects of its structure that deviate from canonical leucine zipper coiled coils that allow tropomyosin to bind to actin, regulate myosin, and interact directly and indirectly with actin-binding proteins. Four genes encode tropomyosins in vertebrates, with additional diversity that results from alternate promoters and alternatively spliced exons. At the same time that periodic motifs for binding actin and regulating myosin are conserved, isoform-specific domains allow for specific interaction with myosins and actin filament regulatory proteins, including troponin. Tropomyosin can be viewed as a universal regulator of the actin cytoskeleton that specifies actin filaments for cellular and intracellular functions.
Nature Communications | 2018
Michael S. Woody; Michael J. Greenberg; Bipasha Barua; Donald A. Winkelmann; Yale E. Goldman; E. Michael Ostap
Omecamtiv mecarbil (OM) is a positive cardiac inotrope in phase-3 clinical trials for treatment of heart failure. Although initially described as a direct myosin activator, subsequent studies are at odds with this description and do not explain OM-mediated increases in cardiac performance. Here we show, via single-molecule, biophysical experiments on cardiac myosin, that OM suppresses myosin’s working stroke and prolongs actomyosin attachment 5-fold, which explains inhibitory actions of the drug observed in vitro. OM also causes the actin-detachment rate to become independent of both applied load and ATP concentration. Surprisingly, increased myocardial force output in the presence of OM can be explained by cooperative thin-filament activation by OM-inhibited myosin molecules. Selective suppression of myosin is an unanticipated route to muscle activation that may guide future development of therapeutic drugs.Omecamtiv mecarbil (OM) is a positive cardiac inotrope in clinical trials for the treatment of heart failure whose mechanism of action is incompletely understood. Here the authors show that OM inhibits myosins working stroke and prolongs actomyosin attachment and propose a model that reconciles the OM-induced increase in cardiac performance in vivo with the inhibitory actions observed in vitro.
Cytoskeleton | 2018
Bipasha Barua; Maria Sckolnick; Howard D. White; Kathleen M. Trybus; Sarah E. Hitchcock-DeGregori
Muscle contraction, cytokinesis, cellular movement, and intracellular transport depend on regulated actin‐myosin interaction. Most actin filaments bind one or more isoform of tropomyosin, a coiled‐coil protein that stabilizes the filaments and regulates interactions with other actin‐binding proteins, including myosin. Isoform‐specific allosteric regulation of muscle myosin II by actin‐tropomyosin is well‐established while that of processive myosins, such as myosin V, which transport organelles and macromolecules in the cell periphery, is less certain. Is the regulation by tropomyosin a universal mechanism, the consequence of the conserved periodic structures of tropomyosin, or is it the result of specialized interactions between particular isoforms of myosin and tropomyosin? Here, we show that striated muscle tropomyosin, Tpm1.1, inhibits fast skeletal muscle myosin II but not myosin Va. The non‐muscle tropomyosin, Tpm3.1, in contrast, activates both myosins. To decipher the molecular basis of these opposing regulatory effects, we introduced mutations at conserved surface residues within the six periodic repeats (periods) of Tpm3.1, in positions homologous or analogous to those important for regulation of skeletal muscle myosin by Tpm1.1. We identified conserved residues in the internal periods of both tropomyosin isoforms that are important for the function of myosin Va and striated myosin II. Conserved residues in the internal and C‐terminal periods that correspond to Tpm3.1‐specific exons inhibit myosin Va but not myosin II function. These results suggest that tropomyosins may directly impact myosin function through both general and isoform‐specific mechanisms that identify actin tracks for the recruitment and function of particular myosins.
Biophysical Journal | 2012
Bipasha Barua; Donald A. Winkelmann; Sarah E. Hitchcock-DeGregori
Tropomyosins (Tm) are α-helical coiled-coil proteins that associate end-to-end along the length of actin filaments in muscle and non-muscle eukaryotic cells. Conserved functions include binding and stabilization of actin filaments and cooperative regulation of actomyosin. From a phylogenetic analysis we identified the most conserved Tm residues and tested the hypothesis that residues important for actin-related functions should be conserved (Barua et al., 2011). We introduced Ala mutations at conserved b, c, f surface coiled-coil positions of rat striated αTm. The mutations were grouped according to their positions in the first or second half of periods 2-6 in a 7-period model of Tms sequence. The E. coli -expressed Tms had an N-terminal Ala-Ser to increase actin affinity. We previously reported that most mutations in the first half of periods 2-6 reduce actin affinity greater than 4-fold. Since mutations in the second halves had a less than 2-fold effect, we postulated the residues may be important for another conserved function, such as myosin regulation. Here we report results of in vitro motility assays to study the effects of mutations in the second halves of periods 2-6 on the cooperative regulation of actomyosin. At surface myosin concentrations that allow maximal velocity of naked actin filaments, the velocity of actin-Tm (A-Tm) filaments was ∼40-50% lower. Addition of N-ethylmaleimide-modified myosin S1 (NEM-S1) increased the velocity of A-Tm filaments over that of actin alone, in a concentration-dependent manner, illustrating activation. The velocity of A-Tm(mut) filaments was further inhibited by ∼50-80% relative to A-Tm, depending on the mutant. Addition of NEM-S1 increased the velocity. The results indicate that conserved residues in the second half of the periodic repeats are required for normal cooperative regulation of actomyosin by Tm. Supported by NIH.