Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Bossenmaier is active.

Publication


Featured researches published by Birgit Bossenmaier.


Cancer Research | 2009

Strongly Enhanced Antitumor Activity of Trastuzumab and Pertuzumab Combination Treatment on HER2-Positive Human Xenograft Tumor Models

Werner Scheuer; Thomas Friess; Helmut Burtscher; Birgit Bossenmaier; Josef Endl; Max Hasmann

The human epidermal growth factor receptor (HER) family plays an important role in cell survival and proliferation, and is implicated in oncogenesis. Overexpression of HER2 is associated with aggressive disease and poor prognosis. Trastuzumab is a humanized monoclonal antibody targeting HER2 and has proven survival benefit for women with HER2-positive early and metastatic breast cancer. Pertuzumab, another monoclonal antibody, is a HER2 dimerization inhibitor that binds to a different epitope on HER2 than trastuzumab and inhibits HER2 dimer formation with other HER family members such as HER3 and HER1. We investigated the antitumor activity of these agents alone and in combination in HER2-positive breast and non-small cell lung cancer xenografts. Our data show that the combination of trastuzumab and pertuzumab has a strongly enhanced antitumor effect and induces tumor regression in both xenograft models, something that cannot be achieved by either monotherapy. The enhanced efficacy of the combination was also observed after tumor progression during trastuzumab monotherapy. Near-IR fluorescence imaging experiments confirm that pertuzumab binding to tumors is not impaired by trastuzumab pretreatment. Furthermore, we show by in vitro assay that both trastuzumab and pertuzumab potently activate antibody-dependent cellular cytotoxicity. However, our data suggest that the strongly enhanced antitumor activity is mainly due to the differing but complementary mechanisms of action of trastuzumab and pertuzumab, namely inhibition of HER2 dimerization and prevention of p95HER2 formation.


Clinical Cancer Research | 2013

GA201 (RG7160): A Novel, Humanized, Glycoengineered Anti-EGFR Antibody with Enhanced ADCC and Superior In Vivo Efficacy Compared with Cetuximab

Christian Gerdes; Valeria Nicolini; Sylvia Herter; Erwin van Puijenbroek; Sabine Lang; Michaela Roemmele; Ekkehard Moessner; Olivier Freytag; Thomas Friess; Carola Ries; Birgit Bossenmaier; Pablo Umana

Purpose: Anti-EGF receptor (EGFR) antibodies and small-molecule tyrosine kinase inhibitors have shown activity in epithelial tumors; however, agents that work by blocking the EGFR growth signal are ineffective when the oncogenic stimulus arises downstream, such as in tumors with KRAS mutations. Antibodies of the IgG1 subclass can also kill tumor cells directly through antibody-dependent cell-mediated cytotoxicity (ADCC), and the efficacy of this is determined by the interaction of the Fc portion of the target cell–bound antibody and Fc receptors present on immune effector cells. Experimental Design: We report the development of GA201, a novel anti-EGFR monoclonal antibody with enhanced ADCC properties. GA201 was derived by humanization of the rat ICR62 antibody. The Fc region of GA201 was glycoengineered to contain bisected, afucosylated carbohydrates for enhanced binding to FcγRIIIA. Results: In vitro binding of GA201 to EGFR inhibited EGF ligand binding, EGFR/HER2 heterodimerization, downstream signaling, and cell proliferation to a similar extent as cetuximab. However, GA201 exhibited superior binding to both the low- and high-affinity variants of FcγRIIIA. This resulted in significantly enhanced induction of ADCC compared with cetuximab against both KRAS-wild-type and -mutant tumor cells lines. This enhanced ADCC translated into superior in vivo efficacy in a series of mouse xenograft models. Efficacy of GA201 was further increased when administered in combination with chemotherapy (irinotecan). Conclusions: These data suggest that GA201 may be more effective than cetuximab in patients with EGFR-positive solid tumors and may also represent a first-in-class treatment of patients with KRAS-mutated tumors. Clin Cancer Res; 19(5); 1126–38. ©2012 AACR.


Diabetes | 1995

Acute Hyperglycemia Provides an Insulin-Independent Inducer for GLUT4 Translocation in C2C12 Myotubes and Rat Skeletal Muscle

Paola Galante; Luitgard Mosthaf; Monika Kellerer; Lucia Berti; Stefanie Tippmer; Birgit Bossenmaier; Toshihiko Fujiwara; Akira Okuno; Hiroyoshi Horikoshi; Hans Häring

GLUT4 translocation and activation of glucose uptake in skeletal muscle can be induced by both physiological (i.e., insulin, nerve stimulation, or exercise) and pharmacological (i.e., phorbol ester) means. Recently, we demonstrated that high glucose levels may mimic the effects of phorbol esters on protein kinase C (PKC) and insulin receptor function (J Biol Chem 269:3381–3386, 1994). In this study, we tested whether the previously described effects of phorbol esters on translocation of GLUT4 in myotubes in culture and also in rat skeletal muscle might be mimicked by glucose. We found that stimulation of C2C12 myotubes with both insulin (10–7) mol/l, 5 min) and glucose (25 mmol/l, 10 min) induces a comparable increase of the GLUT4 content in the plasma membrane. To test whether this effect occurs in intact rat skeletal muscle as well, two different model systems were used. As an in vitro model, isolated rat hindlimbs were perfused for 80 min with medium containing 6 mmol/l glucose ± insulin (1.6 × 10–9 mmol/l, 40 min) or 25 mmol/l glucose. As an in vivo model, acute hyperglycemia (> 11 mmol/l glucose, 20 min) was induced in Wistar rats by intraperitoneal injection of glucose under simultaneous suppression of the endogenous insulin release by injection of somatostatin. In both models, subcellular fractions were prepared from hindlimb skeletal muscle, and plasma membranes were characterized by the enrichment of the marker enzyme α1 Na+ -K+ -ATPase. Acute hyperglaycemia in vivo (n = 5) and in vitro (n = 6) induced an increases of GLUT4 content in the α1 Na+ -K+ -ATPase–enriched fraction (in vivo, 2.45 ± 0.47-fold increase to basal [mean ±SE]; in vitro, 1.71 ± 0.14-fold increase to basal), which was Quantitatively similar to that obtained after insulin treatment (in vivi, 2.35 ± 0.62-fold increase to basal; in vitro, 1.91 ± 0.21-fold increase to basal). Glucose-in-duced GLUT4 translocation in myotubes was prevented by prior addition of the PKC inhibitor 1-(5-isoquinolinyl-by prior addition of the PKC inhibitor 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine; in rat skeletal muscle,GLUT4 translocation was paralleled by a translocation of PKC β, while no effect on PKC α, δ, ∊, and ζ was observed. These results suggest that glucose-induced GLUT4 translocation might represenet an insulin-independent autoregulatory mechanism of the skeletal muscle to rapidly increase glucose uptake in acute hyperglycemia. Activation of PKC β might be involved in this mechanisum in skeletal muscle. GLUT4 translocation was paralleled by a translocation of PKC β, while no effect on PKC α, δ, μ, and ¶ was observed. These results suggest that glucose-induced GLUT4 translocation might represent an insulin-independent autoregulatory mechanism of the skeletal muscle to rapidly increase glucose uptake in acute hyperglycemia. Activation of PKC P might be involved in this mechanism in skeletal muscle.


Cancer Research | 2013

RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation

Christian Mirschberger; Christian Schiller; Michael Schräml; Nikolaos Dimoudis; Thomas Friess; Christian Gerdes; Ulrike Reiff; Valeria Lifke; Gabriele Hoelzlwimmer; Irene Kolm; Karl-Peter Hopfner; Gerhard Niederfellner; Birgit Bossenmaier

The EGF receptor (EGFR) HER3 is emerging as an attractive cancer therapeutic target due to its central position in the HER receptor signaling network. HER3 amplifies phosphoinositide 3-kinase (PI3K)-driven tumorigenesis and its upregulation in response to other anti-HER therapies has been implicated in resistance to them. Here, we report the development and characterization of RG7116, a novel anti-HER3 monoclonal antibody (mAb) designed to block HER3 activation, downregulate HER3, and mediate enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) via glycoengineering of the Fc moiety. Biochemical studies and X-ray crystallography revealed that RG7116 bound potently and selectively to domain 1 of human HER3. Heregulin binding was prevented by RG7116 at concentrations more than 1 nmol/L as was nearly complete inhibition of HER3 heterodimerization and phosphorylation, thereby preventing downstream AKT phosphorylation. In vivo RG7116 treatment inhibited xenograft tumor growth up to 90% relative to controls in a manner accompanied by downregulation of cell surface HER3. RG7116 efficacy was further enhanced in combination with anti-EGFR (RG7160) or anti-HER2 (pertuzumab) mAbs. Furthermore, the ADCC potency of RG7116 was enhanced compared with the nonglycoengineered parental antibody, both in vitro and in orthotopic tumor xenograft models, where an increased median survival was documented. ADCC degree achieved in vitro correlated with HER3 expression levels on tumor cells. In summary, the combination of strong signaling inhibition and enhanced ADCC capability rendered RG7116 a highly potent HER3-targeting agent suitable for clinical development.


Diabetologia | 2000

Serine residues 994 and 1023/25 are important for insulin receptor kinase inhibition by protein kinase C isoforms β2 and θ

Volker Strack; Anita M. Hennige; J. Krützfeldt; Birgit Bossenmaier; Harald H. Klein; Monika Kellerer; Reiner Lammers; Hu Häring

Aims/hypothesis. Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor β-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity.¶Methods. Tyrosine kinase assay and transfection studies.¶Results. In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms β2 and θ. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C.¶Conclusion/interpretation. The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms β2 and θ on insulin receptor autophosphorylation. [Diabetologia (2000) 43: 443–449]


mAbs | 2014

ImmunoPET and biodistribution with human epidermal growth factor receptor 3 targeting antibody 89Zr-RG7116

Anton G.T. Terwisscha van Scheltinga; Marjolijn N. Lub-de Hooge; Keelara Abiraj; Carolien P. Schröder; Linda Pot; Birgit Bossenmaier; Marlene Thomas; Gabriele Hölzlwimmer; Thomas Friess; Jos G. W. Kosterink; Elisabeth G.E. de Vries

The humanized monoclonal antibody with high affinity for the human epidermal growth factor receptor (HER) 3, RG7116, is a glycoengineered, IgG1 class antibody. By labeling RG7116 with zirconium-89 (89Zr) we aimed to visualize in vivo HER3 expression and study the biodistribution of this antibody in human tumor-bearing mice. Biodistribution of 89Zr-RG7116 was studied in subcutaneously xenografted FaDu tumor cells (HER3-positive). Dose-dependency of 89Zr-RG7116 organ distribution and specific tumor uptake was assessed by administering doses ranging from 0.05 to 10 mg/kg RG7116 to SCID/Beige mice. Biodistribution was analyzed at 24 and 144 h after injection. MicroPET imaging was performed at 1, 3, and 6 days after injection of 1.0 mg/kg 89Zr-RG7116 in the FaDu, H441, QG-56 and Calu-1 xenografts with varying HER3 expression. The excised tumors were analyzed for HER3 expression. Biodistribution analyses showed a dose- and time-dependent 89Zr-RG7116 tumor uptake in FaDu tumors. The highest tumor uptake of 89Zr-RG7116 was observed in the 0.05 mg/kg dose group with 27.5%ID/g at 144 h after tracer injection. MicroPET imaging revealed specific tumor uptake of 89Zr-RG7116 in FaDu and H441 models with an increase in tumor uptake over time. Biodistribution data was consistent with the microPET findings in FaDu, H441, QG56 and Calu-1 xenografts, which correlated with HER3 expression levels. In conclusion, 89Zr-RG7116 specifically accumulates in HER3 expressing tumors. PET imaging with this tracer provides real-time non-invasive information about RG7116 distribution, tumor targeting and tumor HER3 expression levels.


Protein Engineering Design & Selection | 2012

Bispecific antibody derivatives with restricted binding functionalities that are activated by proteolytic processing

Silke Metz; Christian Panke; Alexander Haas; Jürgen Schanzer; Wilma Lau; Rebecca Croasdale; Eike Hoffmann; Britta Schneider; Johannes Auer; Christian Gassner; Birgit Bossenmaier; Pablo Umana; Claudio Sustmann; Ulrich Brinkmann

We have designed bispecific antibodies that bind one target (anti-Her3) in a bivalent IgG-like manner and contain one additional binding entity (anti-cMet) composed of one VH and one VL domain connected by a disulfide bond. The molecules are assembled by fusing a VH,Cys44 domain via flexible connector peptides to the C-terminus of one H-chain (heavy chain), and a VL,Cys100 to another H-chain. To ensure heterodimerization during expression in mammalian cells, we introduced complementary knobs-into-holes mutations into the different H-chains. The IgG-shaped trivalent molecules carry as third binding entity one disulfide-stabilized Fv (dsFv) without a linker between VH and VL. Tethering the VH and VL domains at the C-terminus of the CH3 domain decreases the on-rates of the dsFv to target antigens without affecting off-rates. Steric hindrance resolves upon removal of one side of the double connection by proteolysis: this improves flexibility and accessibility of the dsFv and fully restores antigen access and affinity. This technology has multiple applications: (i) in cases where single-chain linkers are not desired, dsFvs without linkers can be generated by addition of furin site(s) in the connector that are processed during expression within mammalian cells; (ii) highly active (toxic) entities which affect expression can be produced as inactive dsFvs and subsequently be activated (e.g. via PreScission cleavage) during purification; (iii) entities can be generated which are targeted by the unrestricted binding entity and can be activated by proteases in target tissues. For example, Her3-binding molecules containing linkers with recognition sequences for matrix metalloproteases or urokinase, whose inactivated cMet binding site is activated by proteolytic processing.


Clinical Cancer Research | 2016

First-in-Human Phase I Study of Lumretuzumab, a Glycoengineered Humanized Anti-HER3 Monoclonal Antibody, in Patients with Metastatic or Advanced HER3-Positive Solid Tumors.

Didier Meulendijks; Wolfgang Jacob; Maria Martinez-Garcia; Álvaro Taus; Martijn P. Lolkema; Emile E. Voest; Marlies H.G. Langenberg; Tania Fleitas Kanonnikoff; A. Cervantes; Maja J.A. de Jonge; Stefan Sleijfer; Morten Mau Soerensen; Marlene Thomas; Maurizio Ceppi; Georgina Meneses-Lorente; Ian James; Celine Adessi; Francesca Michielin; Keelara Abiraj; Birgit Bossenmaier; Jan H. M. Schellens; Martin Weisser; Ulrik Niels Lassen

Purpose: A first-in-human phase I study was conducted to characterize safety, efficacy, and pharmacokinetic (PK) and pharmacodynamic (PD) properties of lumretuzumab, a humanized and glycoengineered anti-HER3 monoclonal antibody, in patients with advanced cancer. Experimental Design: Twenty-five patients with histologically confirmed HER3-expressing tumors received lumretuzumab (100, 200, 400, 800, 1,600, and 2,000 mg) every two weeks (q2w) in 3+3 dose-escalation phase. In addition, 22 patients were enrolled into an extension cohort at 2,000 mg q2w. Results: There were no dose-limiting toxicities. Common adverse events (any grade) included diarrhea (22 patients, 46.8%), fatigue (21 patients, 44.7%), decreased appetite (15 patients, 31.9%), infusion-related reactions (13 patients, 27.7%), and constipation (10 patients, 21.3%). The peak concentration (Cmax) and area under the concentration–time curve up to the last measurable concentration (AUClast) of lumretuzumab increased more than dose proportionally from 100 mg up to 400 mg. Linear PK was observed with doses ≥400 mg q2w indicating target-mediated drug disposition saturation. Downregulation of HER3 membranous protein was observed in on-treatment tumor biopsies from 200 mg, and was maximal at and above 400 mg. An ex vivo assay demonstrated increased activation potential of peripheral NK lymphocytes with lumretuzumab compared with a non-glycoengineered anti-HER3 antibody. Ten patients (21.3%) had stable disease and remained on study at a median of 111 days (range, 80–225 days). Conclusions: Lumretuzumab was well tolerated and showed evidence of clinical activity. Linear serum PK properties and plateauing of PD effects in serial tumor biopsies indicate optimal biologically active doses of lumretuzumab from 400 mg onwards. Clin Cancer Res; 22(4); 877–85. ©2015 AACR.


Diabetes | 1996

Modulation of Insulin Receptor Signaling: Potential Mechanisms of a Cross Talk Between Bradykinin and the Insulin Receptor

Hu Häring; Stefanie Tippmer; Monika Kellerer; Luitgard Mosthaf; Gerhild Kroder; Birgit Bossenmaier; Lucia Berti

Insulin resistance of the skeletal muscle plays a key role in the development of the metabolic endocrine syndrome and its further progression to type II diabetes. Impaired signaling from the insulin receptor to the glucose transport system and to glycogen synthase is thought to be the cause of skeletal muscle insulin resistance. An incomplete activation of the insulin receptor tyrosine kinase, which is found in type II diabetes, appears to contribute to the pathogenesis of the signaling defect. Available data suggest that the impaired tyrosine kinase function of the insulin receptor is not due to an inherited defect but rather is caused by a modulation of insulin receptor function. We used rat-1 fibroblasto and NIH-3T3 cells stably overexpressing human insulin receptor and 293 cells transiently overexpressing human insulin receptor to characterize conditions modulating the signaling function of the insulin receptor kinase. Using these cell models, we could demonstrate that activation of different protein kinase C (PKC) isoforms by high glucose levels or phorbol esters causes a rapid inhibition of the receptor tyrosine kinase activity. This effect is most likely mediated through serine phosphorylation of the receptor β-subunit. It can be prevented by PKC inhibitors and the new oral antidiabetic agent thiazolidindione. The data suggest that PKC might be an important negative regulator of insulin receptor function. Because we have recently shown that bradykinin activates different isoforms of PKC in these cell types, an inhibitory cross talk between the bradykinin receptor and the insulin receptor through PKC activation seemed possible. However, we were unable to observe an insulin receptor tyrosine kinase inhibition through bradykinin, suggesting that different isoforms of PKC are activated by hyperglycemia and bradykinin. On the other hand, a modulation of bradykinin signals by insulin could be demonstrated in these cells. Bradykinin-induced tyrosine phosphorylation of proteins of ∼130 and 70 kDa was inhibited by insulin treatment of rat-1 flbroblasts. These data suggest that signals from the insulin receptor modify signaling from the bradykinin receptor to tyrosine phosphorylation of different cellular proteins.


Molecular Oncology | 2013

Antibody mediated CDCP1 degradation as mode of action for cancer targeted therapy

Gwendlyn Kollmorgen; Gerhard Niederfellner; Alexander Lifke; Gloria J. Spohn; Natascha Rieder; Suzana Vega Harring; Frieder Bauss; Helmut Burtscher; Reiner Lammers; Birgit Bossenmaier

CUB‐domain‐containing‐protein‐1 (CDCP1) is an integral membrane protein whose expression is up‐regulated in various cancer types. Although high CDCP1 expression has been correlated with poor prognosis in lung, breast, pancreas, and renal cancer, its functional role in tumor formation or progression is incompletely understood. So far it has remained unclear, whether CDCP1 is a useful target for antibody therapy of cancer and what could be a desired mode of action for a therapeutically useful antibody. To shed light on these questions, we have investigated the cellular effects of a therapeutic antibody candidate (RG7287). In focus formation assays, prolonged RG7287 treatment prevented the loss of contact inhibition caused by co‐transformation of NIH3T3 cells with CDCP1 and Src. In a xenograft study, MCF7 cells stably overexpressing CDCP1 reached the predefined tumor volume faster than the parental MCF7 cells lacking endogenous CDCP1. This tumor growth advantage was abolished by RG7287 treatment. In vitro, RG7287 induced rapid tyrosine phosphorylation of CDCP1 by Src, which was accompanied by translocation of CDCP1 to a Triton X‐100 insoluble fraction of the plasma membrane. Triggering these effects required bivalency of the antibody suggesting that it involves CDCP1 dimerization or clustering. However, this initial activation of CDCP1 was only transient and prolonged RG7287 treatment induced internalization and down‐regulation of CDCP1 in different cancer cell lines. Antibody stimulated CDCP1 degradation required Src activity and was proteasome dependent. Also in three different xenograft models with endogenous CDCP1 expression RG7287 treatment resulted in significant tumor growth inhibition concomitant with substantially reduced CDCP1 levels as judged by immunohistochemistry and Western blotting. Thus, despite transiently activating CDCP1 signaling, the RG7287 antibody has a therapeutically useful mode of action.

Collaboration


Dive into the Birgit Bossenmaier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge