Birgit Gustafson
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Birgit Gustafson.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2007
Birgit Gustafson; Ann Hammarstedt; Christian X. Andersson; Ulf Smith
The metabolic syndrome is associated with a dysregulated adipose tissue; in part a consequence of adipose cell enlargement and the associated infiltration of macrophages. Adipose cell enlargement leads to a proinflammatory state in the cells with reduced secretion of adiponectin and with increased secretion of several cytokines and chemokines including interleukin (IL)-6, IL-8, and MCP-1. MCP-1 has been shown to play an important role for the associated recruitment of macrophages into the adipose tissue. The increased release of cytokines leads to an impaired differentiation of the preadipocytes with reduced lipid accumulation and induction of adiponectin, thus promoting ectopic lipid storage. In particular tumor necrosis factor (TNF) &agr;, but also IL-6, has been shown to induce these effects in preadipocytes and this is associated with an increased Wnt signaling maintaining the cells in an undifferentiated and proinflammatory state. The proinflammatory state in the adipose tissue also leads to a local insulin resistance including an impaired inhibitory effect of insulin on FFA release. The insulin resistance further supports the proinflammatory state because insulin, by itself, is both antilipolytic and antiinflammatory by antagonizing cytokine-induced activation of STAT signaling.
Diabetes | 2009
Petter Isakson; Ann Hammarstedt; Birgit Gustafson; Ulf Smith
OBJECTIVE We examined preadipocyte differentiation in obese and nonobese individuals and the effect of cytokines and wingless-type MMTV (mouse mammary tumor virus) integration site family, member 3A (Wnt3a) protein on preadipocyte differentiation and phenotype. RESEARCH DESIGN AND METHODS Abdominal subcutaneous adipose tissue biopsies were obtained from a total of 51 donors with varying BMI. After isolation of the adipose and stromalvascular cells, inflammatory cells (CD14- and CD45-positive cells) were removed by immune magnetic separation. CD133-positive cells, containing early progenitor cells, were also isolated and quantified. The CD14- and CD45-negative preadipocytes were cultured with tumor necrosis factor (TNF)-α, interleukin (IL)-6, resistin, or Wnt3a with or without a differentiation cocktail. RESULTS The number of preadipocytes able to differentiate to adipose cells was negatively correlated with both BMI and adipocyte cell size of the donors, whereas the number of CD133-positive cells was positively correlated with BMI, suggesting an impaired differentiation of preadipocytes in obesity. Cultured preadipocytes, like freshly isolated mature adipocytes, from obese individuals had an increased expression of mitogen-activated protein 4 kinase 4 (MAP4K4), which is known to inhibit peroxisome proliferator–activated receptor-γ induction. TNF-α, but not IL-6 or resistin, increased Wnt10b, completely inhibited the normal differentiation of the preadipocytes, and instead induced a proinflammatory and macrophage-like phenotype of the cells. CONCLUSIONS The apparent number of preadipocytes in the abdominal subcutaneous tissue that can undergo differentiation is reduced in obesity with enlarged fat cells, possibly because of increased MAP4K4 levels. TNF-α promoted a macrophage-like phenotype of the preadipocytes, including several macrophage markers. These results document the plasticity of human preadipocytes and the inverse relationship between lipid storage and proinflammatory capacity.
Journal of Biological Chemistry | 2006
Birgit Gustafson; Ulf Smith
Obesity with enlarged fat cells is associated with high local concentrations of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) in the adipose tissue. We examined the effects of this inflammatory state on 3T3-L1 preadipocyte development and differentiation to mature adipose cells. Both IL-6 and TNFα impaired the normal differentiation pattern and lipid accumulation. However, IL-6 allowed a normal early induction of differentiation with inhibition of Wnt10b and Pref-1, whereas expression of CCAAT/enhancer-binding protein α, in contrast to peroxisome proliferator-activated receptor γ, was markedly reduced. TNFα also allowed a normal early induction of differentiation, whereas the terminal differentiation to adipose cells was completely prevented. However, both cytokines induced an inflammatory phenotype of the cells but with different profiles. Remarkably, both IL-6 and TNFα maintained and augmented the canonical Wnt signaling associated with low axin and high low density lipoprotein receptor-related protein (LRD), Dishevelled, and β-catenin levels. TNFα, but not IL-6, activated Wnt10b expression, whereas IL-6 increased the apparent phosphorylation of Dishevelled. Thus, both IL-6 and TNFα prevent the normal development of preadipocytes to fully differentiated adipose cells and, instead, promote an inflammatory phenotype of the adipocytes. These results provide an explanation as to why obesity and diabetes are associated with both local and systemic inflammation, insulin resistance, and ectopic lipid accumulation.
American Journal of Physiology-endocrinology and Metabolism | 2009
Birgit Gustafson; Silvia Gogg; Shahram Hedjazifar; Lachmi E. Jenndahl; Ann Hammarstedt; Ulf Smith
Obesity is associated mainly with adipose cell enlargement in adult man (hypertrophic obesity), whereas the formation of new fat cells (hyperplastic obesity) predominates in the prepubertal age. Adipose cell size, independent of body mass index, is negatively correlated with whole body insulin sensitivity. Here, we review recent findings linking hypertrophic obesity with inflammation and a dysregulated adipose tissue, including local cellular insulin resistance with reduced IRS-1 and GLUT4 protein content. In addition, the number of preadipocytes in the abdominal subcutaneous adipose tissue capable of undergoing differentiation to adipose cells is reduced in hypertrophic obesity. This is likely to promote ectopic lipid accumulation, a well-known finding in these individuals and one that promotes insulin resistance and cardiometabolic risk. We also review recent results showing that TNFα, but not MCP-1, resistin, or IL-6, completely prevents normal adipogenesis in preadipocytes, activates Wnt signaling, and induces a macrophage-like phenotype in the preadipocytes. In fact, activated preadipocytes, rather than macrophages, may completely account for the increased release of chemokines and cytokines by the adipose tissue in obesity. Understanding the molecular mechanisms for the impaired preadipocyte differentiation in the subcutaneous adipose tissue in hypertrophic obesity is a priority since it may lead to new ways of treating obesity and its associated metabolic complications.
Diabetes | 2009
Petter Isakson; Ann Hammarstedt; Birgit Gustafson; Ulf Smith
OBJECTIVE We examined preadipocyte differentiation in obese and nonobese individuals and the effect of cytokines and wingless-type MMTV (mouse mammary tumor virus) integration site family, member 3A (Wnt3a) protein on preadipocyte differentiation and phenotype. RESEARCH DESIGN AND METHODS Abdominal subcutaneous adipose tissue biopsies were obtained from a total of 51 donors with varying BMI. After isolation of the adipose and stromalvascular cells, inflammatory cells (CD14- and CD45-positive cells) were removed by immune magnetic separation. CD133-positive cells, containing early progenitor cells, were also isolated and quantified. The CD14- and CD45-negative preadipocytes were cultured with tumor necrosis factor (TNF)-α, interleukin (IL)-6, resistin, or Wnt3a with or without a differentiation cocktail. RESULTS The number of preadipocytes able to differentiate to adipose cells was negatively correlated with both BMI and adipocyte cell size of the donors, whereas the number of CD133-positive cells was positively correlated with BMI, suggesting an impaired differentiation of preadipocytes in obesity. Cultured preadipocytes, like freshly isolated mature adipocytes, from obese individuals had an increased expression of mitogen-activated protein 4 kinase 4 (MAP4K4), which is known to inhibit peroxisome proliferator–activated receptor-γ induction. TNF-α, but not IL-6 or resistin, increased Wnt10b, completely inhibited the normal differentiation of the preadipocytes, and instead induced a proinflammatory and macrophage-like phenotype of the cells. CONCLUSIONS The apparent number of preadipocytes in the abdominal subcutaneous tissue that can undergo differentiation is reduced in obesity with enlarged fat cells, possibly because of increased MAP4K4 levels. TNF-α promoted a macrophage-like phenotype of the preadipocytes, including several macrophage markers. These results document the plasticity of human preadipocytes and the inverse relationship between lipid storage and proinflammatory capacity.
Trends in Endocrinology and Metabolism | 2015
Birgit Gustafson; Shahram Hedjazifar; Silvia Gogg; Ann Hammarstedt; Ulf Smith
The adipose tissue is crucial in regulating insulin sensitivity and risk for diabetes through its lipid storage capacity and thermogenic and endocrine functions. Subcutaneous adipose tissue (SAT) stores excess lipids through expansion of adipocytes (hypertrophic obesity) and/or recruitment of new precursor cells (hyperplastic obesity). Hypertrophic obesity in humans, a characteristic of genetic predisposition for diabetes, is associated with abdominal obesity, ectopic fat accumulation, and the metabolic syndrome (MS), while the ability to recruit new adipocytes prevents this. We review the regulation of adipogenesis, its relation to SAT expandability and the risks of ectopic fat accumulation, and insulin resistance. The actions of GLUT4 in SAT, including a novel family of lipids enhancing insulin sensitivity/secretion, and the function of bone morphogenetic proteins (BMPs) in white and beige/brown adipogenesis in humans are highlighted.
Biochemical and Biophysical Research Communications | 2003
Birgit Gustafson; Maia M Jack; Samuel W. Cushman; Ulf Smith
We examined the role of PPAR gamma 2 and C/EBP alpha for adiponectin and aP2 gene activation in C/EBP alpha(-/-) fibroblasts by stably expressing PPAR gamma 2 or C/EBP alpha. PPAR gamma 2, but not PPAR gamma 1, mRNA markedly increased during the differentiation to adipocytes in cells expressing C/EBP alpha. Both infected cell lines differentiated to an adipocyte phenotype and the mRNA for both aP2 and adiponectin increased in parallel. However, adiponectin mRNA was considerably higher when C/EBP alpha was present, suggesting that this transcription factor is important for full gene activation. Thiazolidinediones markedly activated the gene in PPAR gamma 2-expressing cells in the absence of C/EBP alpha, suggesting that the adiponectin promoter may have functional PPAR gamma-response elements. Several observations showed that the adiponectin and aP2 genes can be differentially regulated in adipocytes: (1) Topiramate, an anti-epileptic agent with weight-reducing properties, increased adiponectin mRNA levels and secretion, but did not, like the thiazolidinediones, increase aP2 expression; (2) IL-6 reduced adiponectin, but significantly increased, aP2 expression; and (3) TNFalpha inhibited adiponectin, but paradoxically increased, aP2 expression in PPAR gamma 2-infected C/EBP alpha null cells. These data show that activation of the adiponectin gene can be separated from effects on adipogenic genes.
Diabetes-metabolism Research and Reviews | 2008
Christian X. Andersson; Birgit Gustafson; Ann Hammarstedt; Shahram Hedjazifar; Ulf Smith
Type 2 diabetes is the most common metabolic disorder today and has reached epidemic proportions in many countries. Insulin resistance and inflammation play a central role in the pathogenesis of type 2 diabetes and are present long before the onset of the disease. During this time, many of the complications associated with type 2 diabetes are initiated. Of major concern is the two‐ to fourfold increase in cardiovascular morbidity and mortality in this group compared to a nondiabetic population. Obesity, characterized by enlarged fat cells, and insulin resistance are, like type 2 diabetes, associated with impaired adipogenesis and a low‐grade chronic inflammation that to a large extent emanates from the adipose tissue. Both these processes contribute to unfavourable alterations of the circulating levels of several bioactive molecules (adipokines) that are secreted from the adipose tissue, many of which have documented inhibitory effects on insulin sensitivity in the liver and peripheral tissues and, in addition, have negative effects on the cardiovascular system.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Ann Hammarstedt; Shahram Hedjazifar; Lachmi E. Jenndahl; Silvia Gogg; John R. Grünberg; Birgit Gustafson; Eva Klimcakova; Vladimir Stich; Dominique Langin; Markku Laakso; Ulf Smith
Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome.
Diabetes | 2012
Birgit Gustafson; Ulf Smith
Overweight characterized by inappropriate expansion of adipose cells (hypertrophic obesity) is associated with the metabolic syndrome and is caused by an inability to recruit and differentiate new precursor cells. We examined the role of bone morphogenetic protein 4 (BMP4) and WNT activation in the regulation of human adipose cell differentiation. Cluster of differentiation (CD)14+/45+ and CD31+ cells were first removed before the remaining stromal vascular cells of human subcutaneous biopsy specimens were differentiated with/without different WNT inhibitors and/or BMP4. Inhibition of WNT and induction of Dickkopf 1 (DKK1) were markers of precursor cells undergoing excellent differentiation. The addition of DKK1 inhibited WNT activation and promoted adipogenesis in cells with a low degree of differentiation. The positive effect of DKK1, inhibiting cellular WNT activation by binding to the Kremen/LDL receptor–related protein receptors, was not seen with inhibitors of secreted WNT ligands. BMP4 increased differentiation, and BMP4 in the presence of DKK1 produced an additive effect. There was an apparent cross-talk between differentiation and commitment because BMP4 expression increased in differentiating adipocytes, and the addition of the BMP4 inhibitor, Noggin, reduced precursor cell differentiation. Thus, differentiated human adipose cells can promote adipogenesis via endogenous BMP4 activation, and the impaired adipogenesis in hypertrophic obesity is mainly due to an inability to suppress canonical WNT and to induce DKK1.