Christian X. Andersson
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian X. Andersson.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2007
Birgit Gustafson; Ann Hammarstedt; Christian X. Andersson; Ulf Smith
The metabolic syndrome is associated with a dysregulated adipose tissue; in part a consequence of adipose cell enlargement and the associated infiltration of macrophages. Adipose cell enlargement leads to a proinflammatory state in the cells with reduced secretion of adiponectin and with increased secretion of several cytokines and chemokines including interleukin (IL)-6, IL-8, and MCP-1. MCP-1 has been shown to play an important role for the associated recruitment of macrophages into the adipose tissue. The increased release of cytokines leads to an impaired differentiation of the preadipocytes with reduced lipid accumulation and induction of adiponectin, thus promoting ectopic lipid storage. In particular tumor necrosis factor (TNF) &agr;, but also IL-6, has been shown to induce these effects in preadipocytes and this is associated with an increased Wnt signaling maintaining the cells in an undifferentiated and proinflammatory state. The proinflammatory state in the adipose tissue also leads to a local insulin resistance including an impaired inhibitory effect of insulin on FFA release. The insulin resistance further supports the proinflammatory state because insulin, by itself, is both antilipolytic and antiinflammatory by antagonizing cytokine-induced activation of STAT signaling.
Diabetologia | 2008
Sylvie Franckhauser; Ivet Elias; V. Rotter Sopasakis; Tura Ferre; I. Nagaev; Christian X. Andersson; Judith Agudo; Jesús Ruberte; Fatima Bosch; Ulf Smith
Aims/hypothesisIL-6 is released by the adipose tissue and increased circulating levels in obesity are associated with hyperinsulinaemia and insulin resistance. Short-term experiments suggest that increased IL-6 release by the skeletal muscle following exercise may improve insulin sensitivity.MethodsIn order to examine the effect of chronically elevated IL-6 levels, we overexpressed Il6 in skeletal muscle in mice using an electro-transfer procedure.ResultsCirculating IL-6 levels were increased and the animals rapidly lost both weight and body fat, but food intake was unchanged, which is consistent with the finding that IL-6 increased energy expenditure. Insulin levels were inappropriately elevated and combined with hypoglycaemia in spite of reduced 2-deoxy-d-glucose uptake by skeletal muscle. Insulin-stimulated glucose uptake by skeletal muscles ex vivo was reduced, probably due to the decreased amounts of glucose transporter (GLUT)-4. Beta cell insulin content was increased, while apparent beta cell mass was unchanged. Circulating serum amyloid A cluster levels were increased tenfold due to a pronounced proinflammatory state in the liver with infiltration of inflammatory cells. However, no liver steatosis was found, which may be accounted for by concomitant AMP kinase activation.Conclusions/interpretationChronically elevated IL-6 levels lead to inappropriate hyperinsulinaemia, reduced body weight, impaired insulin-stimulated glucose uptake by the skeletal muscles and marked inflammation in the liver. Thus, the pleiotrophic effects of chronically elevated IL-6 levels preclude any obvious usefulness in treating obesity or its associated metabolic complications in man, despite the fact that weight reduction may be expected.
Diabetes-metabolism Research and Reviews | 2008
Christian X. Andersson; Birgit Gustafson; Ann Hammarstedt; Shahram Hedjazifar; Ulf Smith
Type 2 diabetes is the most common metabolic disorder today and has reached epidemic proportions in many countries. Insulin resistance and inflammation play a central role in the pathogenesis of type 2 diabetes and are present long before the onset of the disease. During this time, many of the complications associated with type 2 diabetes are initiated. Of major concern is the two‐ to fourfold increase in cardiovascular morbidity and mortality in this group compared to a nondiabetic population. Obesity, characterized by enlarged fat cells, and insulin resistance are, like type 2 diabetes, associated with impaired adipogenesis and a low‐grade chronic inflammation that to a large extent emanates from the adipose tissue. Both these processes contribute to unfavourable alterations of the circulating levels of several bioactive molecules (adipokines) that are secreted from the adipose tissue, many of which have documented inhibitory effects on insulin sensitivity in the liver and peripheral tissues and, in addition, have negative effects on the cardiovascular system.
Diabetologia | 2010
Annika Nerstedt; A. Johansson; Christian X. Andersson; Emmelie Cansby; Ulf Smith; Margit Mahlapuu
Aim/hypothesisThe aim of the study was to examine the possible role of AMP-activated protein kinase (AMPK) in the regulation of the inflammatory response induced by cytokine action in human liver cells.MethodsIL-6-stimulated expression of the genes for acute-phase response markers serum amyloid A (SAA1, SAA2) and haptoglobin (HP) in the human hepatocarcinoma cell line HepG2 were quantified after modulation of AMPK activity by pharmacological agonists (5-amino-4-imidazole-carboxamideriboside [AICAR], metformin) or by using small interfering (si) RNA transfection. The intracellular signalling pathway mediating the effect of AMPK on IL-6-stimulated acute-phase marker expression was characterised by assessing the phosphorylation levels of the candidate protein signal transducer and activator of transcription 3 (STAT3) in response to AMPK agonists.ResultsAICAR and metformin markedly blunt the IL-6-stimulated expression of SAA cluster genes as well as of haptoglobin in a dose-dependent manner. Moreover, the repression of AMPK activity by siRNA significantly reversed the inhibition of SAA expression by both AICAR and metformin, indicating that the effect of the agonists is dependent on AMPK. For the first time we show that AMPK appears to regulate IL-6 signalling by directly inhibiting the activation of the main downstream target of IL-6, STAT3.Conclusions/interpretationWe provide evidence for a key function of AMPK in suppression of the acute-phase response caused by the action of IL-6 in liver, suggesting that AMPK may act as an intracellular link between chronic low-grade inflammation and metabolic regulation in peripheral metabolic tissues.
Journal of Biological Chemistry | 2007
Christian X. Andersson; Victoria Rotter Sopasakis; Emelie Wallerstedt; Ulf Smith
Adipose tissue secretes different adipokines, including interleukin-6 (IL-6), that have been implicated in the insulin resistance and inflammatory state characterizing obesity. We examined the putative cross-talk between insulin and IL-6 in adipose cells and found that insulin exerts an inhibitory effect on the IL-6 signaling pathway by altering the post-translational modifications of the signal transducer and activator of transcription 3 (STAT3). Insulin reduces the tyrosine phosphorylation and increases the serine phosphorylation of STAT3, thereby reducing its nuclear localization and transcriptional activity. Signaling through the MEK/MAPK pathway plays an important role as treatment with the MEK inhibitor PD98059 reduces the effects of insulin on IL-6 signaling. We also show that the protein tyrosine phosphatase SHP2 is activated upon insulin signaling and is required for the dephosphorylation of STAT3 and that insulin exerts a synergistic effect with IL-6 on suppressor of cytokine signaling 3 expression. As a consequence, the IL-6-induced expression of the inflammatory markers serum amyloid A 3 and haptoglobin are significantly decreased in cells incubated with both IL-6 and insulin. Thus, insulin exerts an important anti-inflammatory effect in adipose cells by impairing the IL-6 signal at several levels.
International Journal of Cancer | 1999
Rein Sikut; Christian X. Andersson; Anu Sikut; Julia Fernandez-Rodriguez; Niclas G. Karlsson; Gunnar C. Hansson
CD43 is a leukocyte‐associated sialoglycoprotein which is also expressed in human colon adenoma and carcinoma. To obtain monoclonal antibodies (MAbs) that would react with CD43 in a glycosylation‐independent way, antibodies were raised against a peptide corresponding to a portion of the CD43 cytoplasmic domain. Hybridomas were screened on paraffin sections from CD43‐positive colon tumours. The reactivity of the antibodies with CD43 was verified by Western blot analysis of lysate of CHO cells transfected with human CD43 cDNA and by immunoprecipitation of lysates from CD43+ cell lines. Epitope mapping of antibodies was done using overlapping heptameric peptides. A detailed characterisation of one of the novel antibodies (CD43‐3A1) is presented. This antibody reacts with the CD43 protein regardless of its glycosylation in Western blot analysis, immunoprecipitation and immuno‐histochemistry of paraffin sections. Immuno‐histochemical analysis of paraffin sections from colon adenoma and carcinoma tissues as well as colon cancer cell lines revealed that CD43 was predominantly localised intracellularly, in contrast to leukocyte‐type cells. The MAb reacted more efficiently with paraffin‐embedded colon adenoma and carcinoma cells than previously characterised CD43‐specific antibodies. This should facilitate the evaluation of a potential role of CD43 during cancer development. Int. J. Cancer82:52–58, 1999.
Tumor Biology | 2002
Julia Fernandez-Rodriguez; Christian X. Andersson; Sirle Laos; Dan Baeckström; Anu Sikut; Rein Sikut; Gunnar C. Hansson
CD43 is an abundant transmembrane sialoglycoprotein in leukocyte-type cell lines, but it has also been suggested to be present in colon adenomas and colon carcinomas. We have now shown that CD43 is expressed in a variety of cell lines of different origins (CaSKI, A549, 293, MTSV1-7, MCF7, HT-1080, Jurkat, K562, COLO 205, HT-29, Caco-2, DLD-1 and SW480). The level of expression of CD43 mRNA was analyzed by reverse transcriptase-polymerase chain reaction and that of the protein by immunoprecipitation and Western blot, flow cytometry and confocal microscopy using two monoclonal anti-CD43 antibodies (L10 and 4D2). As all cell lines expressed CD43, it is suggested that CD43 has a more fundamental function than previously believed and thus cannot be considered only as a specific leukocyte marker.
Diabetologia | 2012
Annika Nerstedt; Emmelie Cansby; Christian X. Andersson; Markku Laakso; Alena Stančáková; Matthias Blüher; Ulf Smith; Margit Mahlapuu
Aims/hypothesisThis study investigates the role of serine/threonine protein kinase 25 (STK25), a member of the sterile 20 (STE20) superfamily of kinases, in the regulation of skeletal muscle metabolism.MethodsThe effect of depleting STK25 in muscle cells was studied by reducing the mRNA and protein content of this target in the rat myoblast cell line L6 by small interfering (si)RNA. The changes in the mRNA and protein levels of several members of the fatty acid oxidative and glucose metabolic pathways were measured by quantitative real-time (qRT)-PCR and western blot. The rate of palmitate oxidation and glucose uptake was measured after transfection with siRNA for Stk25. Expression of STK25 was also evaluated in skeletal muscle biopsies from 41 white Europid men and women with normal and impaired glucose tolerance and type 2 diabetes using qRT-PCR.ResultsWe demonstrate that partial depletion of STK25 increases the expression of uncoupling protein 3 (Ucp3), accompanied by increased lipid oxidation, in myoblasts. In addition, a reduced level of STK25 enhances the expression of Slc2a1 (also known as Glut1), Slc2a4 (also known as Glut4) and hexokinase 2, and correspondingly, improves insulin-stimulated glucose uptake in muscle cells. Consistent with these results, significantly higher STK25 levels were observed in the skeletal muscle of type 2 diabetic patients, compared with individuals with normal glucose tolerance.Conclusions/interpretationThis is the first study indicating a possible role for STK25 in the regulation of glucose and lipid metabolism in L6 myoblasts. This kinase appears to be an interesting new mediator to be evaluated for therapeutic intervention in type 2 diabetes and related complications, as controlled increase in lipid oxidation and insulin-stimulated glucose uptake in skeletal muscle is favourable and can restore energy balance in metabolically compromised states.
Diabetologia | 2010
Emelie Wallerstedt; Ulf Smith; Christian X. Andersson
Aims/hypothesisThe aim of the study was to address the role of protein kinase C-δ (PKCδ) on phosphorylation of signal transducer and activator of transcription 3 (STAT3) and activation of inflammatory genes in response to IL-6 in adipose cells.MethodsDifferentiated mouse 3T3-L1 adipocytes preincubated with the PKCδ inhibitor rottlerin and mouse embryonic fibroblasts (MEFs) lacking PKCδ were incubated with IL-6 and/or insulin. RNA was extracted and the gene expression was analysed by real-time PCR, while the proteins from total, nuclear and cytoplasmic lysates were analysed by immunoblotting.ResultsInhibition of PKCδ by rottlerin significantly reduced both Ser-727 and Tyr-705 phosphorylation of STAT3. Consequently, nuclear translocation of STAT3 and the IL-6-induced gene transcription and protein release of the inflammatory molecule serum amyloid A 3 (SAA3) were reduced. Similarly, the IL-6-regulated gene transcription of Il-6 (also known as Il6) to Hp and the feedback inhibitor of IL-6, Socs3, were also attenuated by rottlerin. Furthermore, PKCδ was found to translocate to the nucleus following IL-6 treatment and this was also reduced by rottlerin. In agreement with the effect of rottlerin, Pkcδ (also known as Prkcd)−/− MEFs also displayed a markedly reduced ability of IL-6 to activate the transcription of Saa3, Hp, Socs3 and Il6 genes compared with wild-type MEFs. These results correlated with a reduced nuclear translocation and phosphorylation of STAT3.Conclusions/interpretationThese results show that PKCδ plays a key role in the inflammatory effect of IL-6 in adipose cells and may be a suitable target for novel anti-inflammatory agents.
Molecular and Cellular Biochemistry | 2011
Emelie Wallerstedt; Madeléne Sandqvist; Ulf Smith; Christian X. Andersson
The liver is an important target for interleukin-6 (IL-6) action leading to an increased inflammatory response with impaired insulin signaling and action. The aims of this study are to address if insulin is anti-inflammatory and attenuates IL-6-induced inflammation in the human hepatoma cell line HepG2 and if this involves signal transducer and activator of transcription 3 (STAT3) signal transduction. It was found that insulin significantly reduced IL-6-induced gene transcription of serum amyloid 1 (SAA1), serum amyloid 2 (SAA2), haptoglobin, orosomucoid, and plasmin activator inhibitor-1 (PAI-1). However, the authors did not find any evidence that insulin inhibited IL-6 signal transduction, i.e., no effect of insulin was detected on STAT3 phosphorylation or its translocation to cell nucleus. The potential role of PKCδ was also analyzed but no evidence of its involvement was found. Taken together, these results suggest that the anti-inflammatory effect of insulin on IL-6 action is exerted at the level of the transcriptional activation of the genes. Further analysis revealed that insulin regulates nuclear localization of FOXO1, which is an important co-activator for STAT3 mediated transcription. Insulin induced nuclear exit and Thr24 phosphorylation of FOXO1, thus, inhibiting STAT3-mediated transcription.