Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Linhart is active.

Publication


Featured researches published by Birgit Linhart.


Annual Review of Immunology | 2010

From Allergen Genes to Allergy Vaccines

Rudolf Valenta; Fatima Ferreira; Margarete Focke-Tejkl; Birgit Linhart; Verena Niederberger; Ines Swoboda; Susanne Vrtala

IgE-mediated allergy is a hypersensitivity disease affecting more than 25% of the population. The structures of the most common allergens have been revealed through molecular cloning technology in the past two decades. On the basis of this knowledge of the sequences and three-dimensional structures of culprit allergens, investigators can now analyze the immune recognition of allergens and the mechanisms of allergic inflammation in allergic patients. Allergy vaccines have been constructed that are able to selectively target the aberrant immune responses in allergic patients via different pathways of the immune system. Here we review various types of allergy vaccines that have been developed based on allergen structures, results from their clinical application in allergic patients, and future strategies for allergen-specific immunotherapy and allergy prophylaxis.


International Archives of Allergy and Immunology | 2002

Recombinant Marker Allergens: Diagnostic Gatekeepers for the Treatment of Allergy

Lili Kazemi-Shirazi; Verena Niederberger; Birgit Linhart; Jonas Lidholm; Dietrich Kraft; Rudolf Valenta

During the past decade an increasing number of recombinant allergens have become available, representing a significant proportion of the epitope complexity of natural allergen extracts. Component-resolved diagnosis with recombinant allergens reveals the antibody reactivity profile of allergic patients and identifies the disease-eliciting allergen molecules. This article exemplifies how recombinant allergen molecules with high cross-reactive potential can be used as marker allergens to identify allergic patients who are cross-sensitized to a variety of allergen sources. It further demonstrates how the use of allergens with a restricted distribution in a certain group of allergen sources may allow the identification of patients who have been genuinely sensitized by a particular allergen molecule. Drawing from those examples, it is suggested how diagnostic tests based on such recombinant marker allergens may be used to improve the choice and monitoring of currently available forms of specific immunotherapy.


Journal of Immunology | 2007

A Recombinant Hypoallergenic Parvalbumin Mutant for Immunotherapy of IgE-Mediated Fish Allergy

Ines Swoboda; Agnes Bugajska-Schretter; Birgit Linhart; Petra Verdino; Walter Keller; Ulrike Schulmeister; Wolfgang R. Sperr; Peter Valent; Gabriel Peltre; Santiago Quirce; Nikolaos Douladiris; Nikolaos G. Papadopoulos; Rudolf Valenta; Susanne Spitzauer

IgE-mediated allergy to fish is a frequent cause of severe anaphylactic reactions. Parvalbumin, a small calcium-binding protein, is the major fish allergen. We have recently isolated a cDNA coding for carp parvalbumin, Cyp c 1, and expressed in Escherichia coli a recombinant Cyp c 1 molecule, which contained most IgE epitopes of saltwater and freshwater fish. In this study, we introduced mutations into the calcium-binding domains of carp parvalbumin by site-directed mutagenesis and produced in E. coli three parvalbumin mutants containing amino acid exchanges either in one (single mutants; Mut-CD and Mut-EF) or in both of the calcium-binding sites (double mutant; Mut-CD/EF). Circular dichroism analyses of the purified derivatives and the wild-type allergen showed that Mut-CD/EF exhibited the greatest reduction of overall protein fold. Dot blot assays and immunoblot inhibition experiments performed with sera from 21 fish-allergic patients showed that Mut-CD/EF had a 95% reduced IgE reactivity and represented the derivative with the least allergenic activity. The latter was confirmed by in vitro basophil histamine release assays and in vivo skin prick testing. The potential applicability for immunotherapy of Mut-CD/EF was demonstrated by the fact that mouse IgG Abs could be raised by immunization with the mutated molecule, which cross-reacted with parvalbumins from various fish species and inhibited the binding of fish-allergic patients’ IgE to the wild-type allergen. Using the hypoallergenic carp parvalbumin mutant Mut-CD/EF, it may be possible to treat fish allergy by immunotherapy.


Allergy | 2011

Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens

R. Valenta; Birgit Linhart; Ines Swoboda; Verena Niederberger

To cite this article: Valenta R, Linhart B, Swoboda I, Niederberger V. Recombinant allergens for allergen‐specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens. Allergy 2011; 66: 775–783.


Clinical & Experimental Allergy | 2004

Non-anaphylactic surface-exposed peptides of the major birch pollen allergen, Bet v 1, for preventive vaccination

M. Focke; Birgit Linhart; Arnulf Hartl; Ursula Wiedermann; Wolfgang R. Sperr; Peter Valent; J. Thalhamer; Dietrich Kraft; R. Valenta

Background Almost 100 million allergic patients are sensitized to the major birch pollen allergen, Bet v 1, a 17 kDa protein containing most of the IgE epitopes present in pollens of trees belonging to the Fagales order and plant‐derived food.


Journal of Immunology | 2009

A Combination Vaccine for Allergy and Rhinovirus Infections Based on Rhinovirus-Derived Surface Protein VP1 and a Nonallergenic Peptide of the Major Timothy Grass Pollen Allergen Phl p 1

Johanna Edlmayr; Katarzyna Niespodziana; Birgit Linhart; Margarete Focke-Tejkl; Kerstin Westritschnig; Sandra Scheiblhofer; Angelika Stoecklinger; Michael Kneidinger; Peter Valent; Raffaela Campana; Josef Thalhamer; Theresia Popow-Kraupp; Rudolf Valenta

Allergens and rhinovirus infections are among the most common elicitors of respiratory diseases. We report the construction of a recombinant combination vaccine for allergy and rhinovirus infections based on rhinovirus-derived VP1, the surface protein which is critically involved in infection of respiratory cells, and a nonallergenic peptide of the major grass pollen allergen Phl p 1. Recombinant hybrid molecules consisting of VP1 and a Phl p 1-derived peptide of 31 aa were expressed in Escherichia coli. The hybrid molecules did not react with IgE Abs from grass pollen allergic patients and lacked allergenic activity when exposed to basophils from allergic patients. Upon immunization of mice and rabbits, the hybrids did not sensitize against Phl p 1 but induced protective IgG Abs that cross-reacted with group 1 allergens from different grass species and blocked allergic patients’ IgE reactivity to Phl p 1 as well as Phl p 1-induced basophil degranulation. Moreover, hybrid-induced IgG Abs inhibited rhinovirus infection of cultured human epithelial cells. The principle of fusing nonallergenic allergen-derived peptides onto viral carrier proteins may be used for the engineering of safe allergy vaccines which also protect against viral infections.


Clinical & Experimental Allergy | 2011

Molecular characterization of Der p 10: a diagnostic marker for broad sensitization in house dust mite allergy

Yvonne Resch; Margit Weghofer; Seiberler S; F. Horak; Sandra Scheiblhofer; Birgit Linhart; Ines Swoboda; Wayne R. Thomas; Josef Thalhamer; R. Valenta; Susanne Vrtala

Background Tropomyosins represent clinically relevant seafood allergens but the role of mite tropomyosin, Der p 10, in house dust mite (HDM) allergy has not been studied in detail.


Gastroenterology | 2015

Food Allergies: The Basics

Rudolf Valenta; Heidrun Hochwallner; Birgit Linhart; Sandra Pahr

IgE-associated food allergy affects approximately 3% of the population and has severe effects on the daily life of patients—manifestations occur not only in the gastrointestinal tract but also affect other organ systems. Birth cohort studies have shown that allergic sensitization to food allergens develops early in childhood. Mechanisms of pathogenesis include cross-linking of mast cell– and basophil-bound IgE and immediate release of inflammatory mediators, as well as late-phase and chronic allergic inflammation, resulting from T-cell, basophil, and eosinophil activation. Researchers have begun to characterize the molecular features of food allergens and have developed chip-based assays for multiple allergens. These have provided information about cross-reactivity among different sources of food allergens, identified disease-causing food allergens, and helped us to estimate the severity and types of allergic reactions in patients. Importantly, learning about the structure of disease-causing food allergens has allowed researchers to engineer synthetic and recombinant vaccines.


Journal of Immunology | 2011

Mapping of Conformational IgE Epitopes with Peptide-Specific Monoclonal Antibodies Reveals Simultaneous Binding of Different IgE Antibodies to a Surface Patch on the Major Birch Pollen Allergen, Bet v 1

Anna Gieras; Petra Cejka; Katharina Blatt; Margarete Focke-Tejkl; Birgit Linhart; Sabine Flicker; Angelika Stoecklinger; Katharina Marth; Anja Drescher; Josef Thalhamer; Peter Valent; Otto Majdic; Rudolf Valenta

Allergic inflammation is based on the cross-linking of mast cell and basophil-bound IgE Abs and requires at least two binding sites for IgE on allergens, which are difficult to characterize because they are often conformational in nature. We studied the IgE recognition of birch pollen allergen Bet v 1, a major allergen for >100 million allergic patients. Monoclonal and polyclonal Abs raised against Bet v 1-derived peptides were used to compete with allergic patients’ IgE binding to Bet v 1 to search for sequences involved in IgE recognition. Strong inhibitions of patients’ IgE binding to Bet v 1 (52–75%) were obtained with mAbs specific for two peptides comprising aa 29–58 (P2) and aa 73–103 (P6) of Bet v 1. As determined by surface plasmon resonance, mAb2 specific for P2 and mAb12 specific for P6 showed high affinity, but only polyclonal rabbit anti-P2 and anti-P6 Abs or a combination of mAbs inhibited allergen-induced basophil degranulation. Thus, P2 and P6 define a surface patch on the Bet v 1 allergen, which allows simultaneous binding of several different IgE Abs required for efficient basophil and mast cell activation. This finding explains the high allergenic activity of the Bet v 1 allergen. The approach of using peptide-specific Abs for the mapping of conformational IgE epitopes on allergens may be generally applicable. It may allow discriminating highly allergenic from less allergenic allergen molecules and facilitate the rational design of active and passive allergen-specific immunotherapy strategies.


Vaccine | 2012

Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives

Birgit Linhart; Rudolf Valenta

Hundred years ago therapeutic vaccination with allergen-containing extracts has been introduced as a clinically effective, disease-modifying, allergen-specific and long-lasting form of therapy for allergy, a hypersensitivity disease affecting more than 25% of the population. Today, the structures of most of the disease-causing allergens have been elucidated and recombinant hypoallergenic allergen derivatives with reduced allergenic activity have been engineered to reduce side effects during allergen-specific immunotherapy (SIT). These recombinant hypoallergens have been characterized in vitro, in experimental animal models and in clinical trials in allergic patients. This review provides a summary of the molecular, immunological and preclinical evaluation criteria applied for this new generation of allergy vaccines. Furthermore, we summarize the mechanisms underlying SIT with recombinant hypoallergens which are thought to be responsible for their therapeutic effect.

Collaboration


Dive into the Birgit Linhart's collaboration.

Top Co-Authors

Avatar

Rudolf Valenta

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Valent

Vienna General Hospital

View shared research outputs
Top Co-Authors

Avatar

Ines Swoboda

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Verena Niederberger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Dietrich Kraft

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Christian Lupinek

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

R. Valenta

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Thomas Wekerle

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge