Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margarete Focke-Tejkl is active.

Publication


Featured researches published by Margarete Focke-Tejkl.


Annual Review of Immunology | 2010

From Allergen Genes to Allergy Vaccines

Rudolf Valenta; Fatima Ferreira; Margarete Focke-Tejkl; Birgit Linhart; Verena Niederberger; Ines Swoboda; Susanne Vrtala

IgE-mediated allergy is a hypersensitivity disease affecting more than 25% of the population. The structures of the most common allergens have been revealed through molecular cloning technology in the past two decades. On the basis of this knowledge of the sequences and three-dimensional structures of culprit allergens, investigators can now analyze the immune recognition of allergens and the mechanisms of allergic inflammation in allergic patients. Allergy vaccines have been constructed that are able to selectively target the aberrant immune responses in allergic patients via different pathways of the immune system. Here we review various types of allergy vaccines that have been developed based on allergen structures, results from their clinical application in allergic patients, and future strategies for allergen-specific immunotherapy and allergy prophylaxis.


Journal of Immunology | 2009

A Combination Vaccine for Allergy and Rhinovirus Infections Based on Rhinovirus-Derived Surface Protein VP1 and a Nonallergenic Peptide of the Major Timothy Grass Pollen Allergen Phl p 1

Johanna Edlmayr; Katarzyna Niespodziana; Birgit Linhart; Margarete Focke-Tejkl; Kerstin Westritschnig; Sandra Scheiblhofer; Angelika Stoecklinger; Michael Kneidinger; Peter Valent; Raffaela Campana; Josef Thalhamer; Theresia Popow-Kraupp; Rudolf Valenta

Allergens and rhinovirus infections are among the most common elicitors of respiratory diseases. We report the construction of a recombinant combination vaccine for allergy and rhinovirus infections based on rhinovirus-derived VP1, the surface protein which is critically involved in infection of respiratory cells, and a nonallergenic peptide of the major grass pollen allergen Phl p 1. Recombinant hybrid molecules consisting of VP1 and a Phl p 1-derived peptide of 31 aa were expressed in Escherichia coli. The hybrid molecules did not react with IgE Abs from grass pollen allergic patients and lacked allergenic activity when exposed to basophils from allergic patients. Upon immunization of mice and rabbits, the hybrids did not sensitize against Phl p 1 but induced protective IgG Abs that cross-reacted with group 1 allergens from different grass species and blocked allergic patients’ IgE reactivity to Phl p 1 as well as Phl p 1-induced basophil degranulation. Moreover, hybrid-induced IgG Abs inhibited rhinovirus infection of cultured human epithelial cells. The principle of fusing nonallergenic allergen-derived peptides onto viral carrier proteins may be used for the engineering of safe allergy vaccines which also protect against viral infections.


Journal of Immunology | 2009

Cloning, Expression, and Mapping of Allergenic Determinants of αS1-Casein, a Major Cow’s Milk Allergen

Ulrike Schulmeister; Heidrun Hochwallner; Ines Swoboda; Margarete Focke-Tejkl; Beate Geller; Mats Nystrand; Annika Härlin; Josef Thalhamer; Sandra Scheiblhofer; Walter Keller; Bodo Niggemann; Santiago Quirce; Christoph Ebner; Adriano Mari; Gabrielle Pauli; Udo Herz; Rudolf Valenta; Susanne Spitzauer

Milk is one of the first components introduced into human diet. It also represents one of the first allergen sources, which induces IgE-mediated allergies in childhood ranging from gastrointestinal, skin, and respiratory manifestations to severe life-threatening manifestations, such as anaphylaxis. Here we isolated a cDNA coding for a major cow’s milk allergen, αS1-casein, from a bovine mammary gland cDNA library with allergic patients’ IgE Abs. Recombinant αS1-casein was expressed in Escherichia coli, purified, and characterized by circular dichroism as a folded protein. IgE epitopes of αS1-casein were determined with recombinant fragments and synthetic peptides spanning the αS1-casein sequence using microarrayed components and sera from 66 cow’s milk-sensitized patients. The allergenic activity of rαS1-casein and the αS1-casein-derived peptides was determined using rat basophil leukemia cells transfected with human FcεRI, which had been loaded with the patients’ serum IgE. Our results demonstrate that rαS1-casein as well as αS1-casein-derived peptides exhibit IgE reactivity, but mainly the intact rαS1-casein induced strong basophil degranulation. These results suggest that primarily intact αS1-casein or larger IgE-reactive portions thereof are responsible for IgE-mediated symptoms of food allergy. Recombinant αS1-casein as well as αS1-casein-derived peptides may be used in clinical studies to further explore pathomechanisms of food allergy as well as for the development of new diagnostic and therapeutic strategies for milk allergy.


Journal of Immunology | 2011

Mapping of Conformational IgE Epitopes with Peptide-Specific Monoclonal Antibodies Reveals Simultaneous Binding of Different IgE Antibodies to a Surface Patch on the Major Birch Pollen Allergen, Bet v 1

Anna Gieras; Petra Cejka; Katharina Blatt; Margarete Focke-Tejkl; Birgit Linhart; Sabine Flicker; Angelika Stoecklinger; Katharina Marth; Anja Drescher; Josef Thalhamer; Peter Valent; Otto Majdic; Rudolf Valenta

Allergic inflammation is based on the cross-linking of mast cell and basophil-bound IgE Abs and requires at least two binding sites for IgE on allergens, which are difficult to characterize because they are often conformational in nature. We studied the IgE recognition of birch pollen allergen Bet v 1, a major allergen for >100 million allergic patients. Monoclonal and polyclonal Abs raised against Bet v 1-derived peptides were used to compete with allergic patients’ IgE binding to Bet v 1 to search for sequences involved in IgE recognition. Strong inhibitions of patients’ IgE binding to Bet v 1 (52–75%) were obtained with mAbs specific for two peptides comprising aa 29–58 (P2) and aa 73–103 (P6) of Bet v 1. As determined by surface plasmon resonance, mAb2 specific for P2 and mAb12 specific for P6 showed high affinity, but only polyclonal rabbit anti-P2 and anti-P6 Abs or a combination of mAbs inhibited allergen-induced basophil degranulation. Thus, P2 and P6 define a surface patch on the Bet v 1 allergen, which allows simultaneous binding of several different IgE Abs required for efficient basophil and mast cell activation. This finding explains the high allergenic activity of the Bet v 1 allergen. The approach of using peptide-specific Abs for the mapping of conformational IgE epitopes on allergens may be generally applicable. It may allow discriminating highly allergenic from less allergenic allergen molecules and facilitate the rational design of active and passive allergen-specific immunotherapy strategies.


Journal of Immunology | 2013

A Nonallergenic Birch Pollen Allergy Vaccine Consisting of Hepatitis PreS–Fused Bet v 1 Peptides Focuses Blocking IgG toward IgE Epitopes and Shifts Immune Responses to a Tolerogenic and Th1 Phenotype

Katharina Marth; Isabella Breyer; Margarete Focke-Tejkl; Katharina Blatt; Mohamed H. Shamji; Janice Layhadi; Anna Gieras; Ines Swoboda; Domen Zafred; Walter Keller; Peter Valent; Stephen R. Durham; Rudolf Valenta

Allergen-specific immunotherapy is the only allergen-specific and disease-modifying treatment for allergy. The construction and characterization of a vaccine for birch pollen allergy is reported. Two nonallergenic peptides, PA and PB, derived from the IgE-reactive areas of the major birch pollen allergen Bet v 1 were fused to the hepatitis B surface protein, PreS, in four recombinant fusion proteins containing different numbers and combinations of the peptides. Fusion proteins expressed in Escherichia coli and purified to homogeneity showed a lack of IgE reactivity and allergenic activity when tested with sera and basophils from patients allergic to birch pollen. Compared to Bet v 1 allergen, peptides PA and PB showed reduced T cell activation in PBMCs from allergic patients, whereas PreS fusion proteins induced less IL-5 and more IL-10 and IFN-γ. Immunization of rabbits with the fusion proteins, in particular with a PreS fusion protein 2PAPB-PreS, containing two copies of each peptide, induced high levels of IgG Abs against the major IgE-reactive site on Bet v 1 and related allergens. These IgG Abs inhibited allergic patients’ IgE binding to Bet v 1 better than did IgG induced by immunization with complete Bet v 1. Furthermore, 2PAPB-PreS–induced IgG inhibited Bet v 1–induced basophil activation in allergic patients and CD23-facilitated allergen presentation. Our study exemplifies novel beneficial features for a PreS carrier–based peptide vaccine for birch pollen, which, in addition to the established reduction in allergenic activity, include the enhanced focusing of blocking Ab responses toward IgE epitopes, immunomodulatory activity, and reduction of CD23-facilitated allergen presentation.


EBioMedicine | 2016

Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy

Petra Zieglmayer; Margarete Focke-Tejkl; René Schmutz; Patrick Lemell; René Zieglmayer; Milena Weber; Renata Kiss; Katharina Blatt; Peter Valent; Frank Stolz; Hans Huber; Angela Neubauer; Anette Knoll; Friedrich Horak; Rainer Henning; Rudolf Valenta

Background We have developed a recombinant B cell epitope-based vaccine (BM32) for allergen-specific immunotherapy (AIT) of grass pollen allergy. The vaccine contains recombinant fusion proteins consisting of allergen-derived peptides and the hepatitis B surface protein domain preS as immunological carrier. Methods We conducted a randomized, double-blind, placebo-controlled AIT study to determine safety, clinical efficacy and immunological mechanism of three subcutaneous injections of three BM32 doses adsorbed to aluminum hydroxide versus aluminum hydroxide (placebo) applied monthly to grass pollen allergic patients (n = 70). Primary efficacy endpoint was the difference in total nasal symptom score (TNSS) through grass pollen chamber exposure before treatment and 4 weeks after the last injection. Secondary clinical endpoints were total ocular symptom score (TOSS) and allergen-specific skin response evaluated by titrated skin prick testing (SPT) at the same time points. Treatment-related side effects were evaluated as safety endpoints. Changes in allergen-specific antibody, cellular and cytokine responses were measured in patients before and after treatment. Results Sixty-eight patients completed the trial. TNSS significantly decreased with mean changes of − 1.41 (BM32/20 μg) (P = 0.03) and − 1.34 (BM32/40 μg) (P = 0.003) whereas mean changes in the BM32/10 μg and placebo group were not significant. TOSS and SPT reactions showed a dose-dependent decrease. No systemic immediate type side effects were observed. Only few grade 1 systemic late phase reactions occurred in BM32 treated patients. The number of local injection site reactions was similar in actively and placebo-treated patients. BM32 induced highly significant allergen-specific IgG responses (P < 0.0001) but no allergen-specific IgE. Allergen-induced basophil activation was reduced in BM32 treated patients and addition of therapy-induced IgG significantly suppressed T cell activation (P = 0.0063). Conclusion The B cell epitope-based recombinant grass pollen allergy vaccine BM32 is well tolerated and few doses are sufficient to suppress immediate allergic reactions as well as allergen-specific T cell responses via a selective induction of allergen-specific IgG antibodies. (ClinicalTrials.gov number, NCT01445002.)


The Journal of Allergy and Clinical Immunology | 2010

Hypoallergenic derivatives of the major birch pollen allergen Bet v 1 obtained by rational sequence reassembly

Raffaela Campana; Susanne Vrtala; Bernhard Maderegger; Peter Jertschin; Gottfried Stegfellner; Ines Swoboda; Margarete Focke-Tejkl; Katharina Blatt; Anna Gieras; Domen Zafred; Angela Neubauer; Peter Valent; Walter Keller; Susanne Spitzauer; Rudolf Valenta

BACKGROUND At least 100 million patients suffer from birch pollen allergy. OBJECTIVE Rational design of recombinant derivatives of the major birch pollen allergen, Bet v 1, characterized by reduced IgE reactivity, preservation of sequences relevant for the induction of allergen-specific blocking IgG, and maintenance of T-cell epitopes for immunotherapy of birch pollen allergy. METHODS Three recombinant mosaic proteins derived from Bet v 1 were generated by reassembly of codon-optimized genes coding for Bet v 1 fragments containing the elements for the induction of allergen-specific blocking IgG antibodies and the major T-cell epitopes. The proteins were expressed in Escherichia coli as recombinant mosaic molecules and compared with the Bet v 1 wild-type protein by chemical and structural methods, regarding IgE-binding and IgG-binding capacity, in basophil activation assays and tested for the in vivo induction of IgG responses. RESULTS Three recombinant Bet v 1 (rBet v 1) mosaic proteins with strongly reduced IgE reactivity and allergenic activity were expressed and purified. Immunization with the recombinant hypoallergens induced IgG antibodies that inhibited IgE reactivity of patients with allergy to Bet v 1 comparable to those induced with the rBet v 1 wild-type allergen. CONCLUSION We report the generation and preclinical characterization of 3 hypoallergenic rBet v 1 derivatives with suitable properties for immunotherapy of birch pollen allergy.


Current Opinion in Allergy and Clinical Immunology | 2012

Safety of engineered allergen-specific immunotherapy vaccines.

Margarete Focke-Tejkl; Rudolf Valenta

Purpose of reviewThe purpose of the review is to summarize and comment on recent developments regarding the safety of engineered immunotherapy vaccines. Recent findingsIn the last 2 years, several studies were published in which allergy vaccines were developed on the basis of chemical modification of natural allergen extracts, the engineering of allergen molecules by recombinant DNA technology and synthetic peptide chemistry, allergen genes, new application routes and conjugation with immune modulatory molecules. Several studies exemplified the general applicability of hypoallergenic vaccines on the basis of recombinant fusion proteins consisting of nonallergenic allergen-derived peptides fused to allergen-unrelated carrier molecules. These vaccines are engineered to reduce both, immunoglobulin E (IgE) as well as allergen-specific T cell epitopes in the vaccines, and thus should provoke less IgE and T-cell-mediated side-effects. They are made to induce allergen-specific IgG antibodies against the IgE-binding sites of allergens with the T-cell help of the carrier molecule. SummarySeveral interesting examples of allergy vaccines with potentially increased safety profiles have been published. The concept of fusion proteins consisting of allergen-derived hypoallergenic peptides fused to allergen-unrelated proteins that seems to be broadly applicable for a variety of allergens appears to be of particular interest because it promises not only to reduce side-effects but also to increase efficacy and convenience of allergy vaccines.


The Journal of Allergy and Clinical Immunology | 2014

Dissection of the IgE and T-cell recognition of the major group 5 grass pollen allergen Phl p 5

Margarete Focke-Tejkl; Raffaela Campana; Renate Reininger; Christian Lupinek; Katharina Blatt; Peter Valent; Tea Pavkov-Keller; Walter Keller; Rudolf Valenta

BACKGROUND The major timothy grass pollen allergen Phl p 5 belongs to the most potent allergens involved in hay fever and asthma. OBJECTIVE This study characterized immune-dominant IgE- and T-cell-recognition sites of Phl p 5. METHODS Seven peptides, P1 to P7 with a length of 31 to 38 amino acids that spanned the Phl p 5 sequence, were synthesized, characterized by circular dichroism spectroscopy, and tested for IgE reactivity, basophil activation, and T-cell reactivity. Carrier-bound peptides were studied for their ability to induce IgG antibodies in rabbits which recognize Phl p 5 or cross-reactive allergens from different grass species. Peptide-specific antibodies were tested for the capability to inhibit IgE reactivity to Phl p 5 and allergen-induced basophil activation of patients with allergy. RESULTS The peptides exhibited no secondary structure and showed no IgE reactivity or relevant allergenic activity, indicating that Phl p 5 IgE epitopes are conformational. Except for P3, peptide-specific IgG antibodies blocked IgE binding to Phl p 5 of patients with allergy and cross-reacted with temperate grasses. IgE inhibition experiments and molecular modeling identified several clustered conformational IgE epitopes on the N- as well as C-terminal domain of Phl p 5. P4, which stimulated the strongest T-cell and cytokine responses in patients, was not part of the major IgE-reactive regions. CONCLUSION Our study shows an interesting dissociation of the major IgE- and T-cell-reactive domains in Phl p 5 which provides a basis for the development of novel forms of immunotherapy that selectively target IgE or T-cell responses.


Journal of Immunology | 2007

A Hypoallergenic Vaccine Obtained by Tail-to-Head Restructuring of Timothy Grass Pollen Profilin, Phl p 12, for the Treatment of Cross-Sensitization to Profilin

Kerstin Westritschnig; Birgit Linhart; Margarete Focke-Tejkl; Tea Pavkov; Walter Keller; Tanja Ball; Adriano Mari; Arnulf Hartl; Angelika Stöcklinger; Sandra Scheiblhofer; Josef Thalhamer; Fatima Ferreira; Stefan Vieths; Lothar Vogel; Alexandra Böhm; Peter Valent; Rudolf Valenta

Profilins are highly cross-reactive allergens in pollens and plant food. In a paradigmatic approach, the cDNA coding for timothy grass pollen profilin, Phl p 12, was used as a template to develop a new strategy for engineering an allergy vaccine with low IgE reactivity. Non-IgE-reactive fragments of Phl p 12 were identified by synthetic peptide chemistry and restructured (rs) as a new molecule, Phl p 12-rs. It comprised the C terminus of Phl p 12 at its N terminus and the Phl p 12 N terminus at its C terminus. Phl p 12-rs was expressed in Escherichia coli and purified to homogeneity. Determination of secondary structure by circular dichroism indicated that the restructuring process had reduced the IgE-reactive α-helical contents of the protein but retained its β-sheet conformation. Phl p 12-rs exhibited reduced IgE binding capacity and allergenic activity but preserved T cell reactivity in allergic patients. IgG Abs induced by immunization of mice and rabbits with Phl p 12-rs cross-reacted with pollen and food-derived profilins. Recombinant Phl p 12-rs, rPhl p 12-rs, induced less reaginic IgE to the wild-type allergen than rPhl p 12. However, the rPhl p 12-rs-induced IgGs inhibited allergic patients’ IgE Ab binding to profilins to a similar degree as those induced by immunization with the wild type. Phl p 12-rs specific IgG inhibited profilin-induced basophil degranulation. In conclusion, a restructured recombinant vaccine was developed for the treatment of profilin-allergic patients. The strategy of tail-to-head reassembly of hypoallergenic allergen fragments within one molecule represents a generally applicable strategy for the generation of allergy vaccines.

Collaboration


Dive into the Margarete Focke-Tejkl's collaboration.

Top Co-Authors

Avatar

Rudolf Valenta

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Birgit Linhart

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Verena Niederberger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Peter Valent

Vienna General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katharina Blatt

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Milena Weber

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Christian Lupinek

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Julia Eckl-Dorna

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge