Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgitta Tomkinson is active.

Publication


Featured researches published by Birgitta Tomkinson.


Nature Immunology | 2011

Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes

Jan H. Kessler; Selina Khan; Ulrike Seifert; Sylvie Le Gall; K. Martin Chow; Annette Paschen; Sandra A. Bres-Vloemans; Arnoud H. de Ru; Nadine van Montfoort; Kees L. M. C. Franken; Willemien E. Benckhuijsen; Jill M. Brooks; Thorbald van Hall; Kallol Ray; Arend Mulder; Ilias I.N. Doxiadis; Paul F. van Swieten; Hermen S. Overkleeft; Annik Prat; Birgitta Tomkinson; Jacques Neefjes; Peter M. Kloetzel; David W. Rodgers; Louis B. Hersh; Jan W. Drijfhout; Peter A. van Veelen; Ferry Ossendorp; Cornelis J. M. Melief

Cytotoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C terminus of these CTL epitopes is considered to be produced by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus protein EBNA3C, and a clinically important epitope from the melanoma protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing, and nardilysin contributed to both the C-terminal and N-terminal generation of CTL epitopes. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer.


Biochemical and Biophysical Research Communications | 2002

Tripeptidyl-peptidase II expression and activity are increased in skeletal muscle during sepsis

Curtis J. Wray; Birgitta Tomkinson; Bruce W. Robb; Per-Olof Hasselgren

Ubiquitin-proteasome-dependent protein degradation plays a central role in sepsis-induced muscle wasting. Because the proteasome degrades proteins into small peptides rather than free amino acids, it is likely that additional mechanisms downstream of the proteasome are involved in sepsis-induced muscle proteolysis. Recent studies suggest that the extralysosomal peptidase tripeptidyl-peptidase II (TPP II) degrades peptides generated by the proteasome. We hypothesized that TPP II expression and activity are increased in skeletal muscle during sepsis. Sepsis was induced in rats by cecal ligation and puncture. Control rats were sham-operated. TPP II activity was determined by using the specific substrate Ala-Ala-Phe-7-amido-4-methylcoumarin (AAF-AMC). TPP II protein and gene expression were determined by Western blot and real-time PCR, respectively. Sepsis resulted in increased activity and protein and gene expression of TPP II in extensor digitorum longus muscles. This result was blunted by the glucocorticoid receptor antagonist RU 38486, indicating that glucocorticoids participate in the upregulation of TPP II in skeletal muscle during sepsis. The results suggest that proteolytic mechanisms downstream of the proteasome may be important for the complete degradation of muscle proteins during sepsis.


Biochimica et Biophysica Acta | 2002

Identification of the catalytic triad in tripeptidyl-peptidase II through site-directed mutagenesis.

Hubert Hilbi; Emese Jozsa; Birgitta Tomkinson

Tripeptidyl-peptidase II (TPP II) is a 138-kDa subtilisin-like serine peptidase forming high molecular mass oligomers of >1000 kDa. The enzyme participates in general protein turnover and apoptotic pathways, and also has specific substrates such as neuropeptides. Here we report the site-directed mutagenesis of amino acids predicted to be involved in catalysis. The amino acids forming the putative catalytic triad (Asp-44, His-264, Ser-449) as well as the conserved Asn-362, potentially stabilizing the transition state, were replaced by alanine and the mutated cDNAs were transfected into human embryonic kidney (HEK) 293 cells. In clones stably expressing the mutant proteins, TPP II activity did not exceed the endogenous activity, thus confirming the essential role of the above amino acids in catalysis. Mutant and wild-type TPP II subunits co-eluted from a gel filtration column, suggesting that the subunits associate and that the native subunit conformation was retained in the mutants. Interestingly, the S449A and a H264A mutant enzyme affected the quaternary structure of the endogenously expressed TPP II, resulting in formation of an active, larger complex of >10,000 kDa.


Biochimica et Biophysica Acta | 2008

Investigation of a role for Glu-331 and Glu-305 in substrate binding of tripeptidyl-peptidase II.

Ann-Christin Lindås; Sandra Eriksson; Emese Jozsa; Birgitta Tomkinson

The aim of this study was to investigate the mechanism by which tripeptidyl-peptidase II (TPP II) can specifically release tripeptides from the free N-terminus of an oligopeptide. The subtilisin-like N-terminal part of TPP II was modelled using subtilisin as template. Two glutamate residues (Glu-305 and Glu-331) appeared to be positioned so as to interact with the positively charged N-terminus of the substrate. In order to test this potential interaction, both residues were replaced by glutamine and lysine. The catalytic efficiency was reduced 400-fold for the E331Q variant and 20000-fold for the E331K variant, compared with the wild-type (wt). A substantial part of this reduction was due to decreased substrate affinity, since the K(M) for both mutants was at least two orders of magnitude greater than for the wt. This decrease was linked specifically to interaction with the free N-terminal amino group, based on inhibition studies. Glu-305 appears to be essential for enzymatic activity, but the extremely low activity of the E305Q variant prevented an investigation of the involvement of Glu-305 in substrate binding. The present work is, to our knowledge, the first report to investigate a mechanism for a tripeptidyl-peptidase activity through site-directed mutagenesis.


Archives of Biochemistry and Biophysics | 2009

Development, evaluation and application of tripeptidyl-peptidase II sequence signatures

Sandra Eriksson; Omar A. Gutiérrez; Pernilla Bjerling; Birgitta Tomkinson

Tripeptidyl-peptidase II (TPP II) is a cytosolic peptidase that has been implicated in fat formation and cancer, apparently independent of the enzymatic activity. In search for alternative functional regions, conserved motifs were identified and eleven signatures were constructed. Seven of the signatures covered previously investigated residues, whereas the functional importance of the other motifs is unknown. This provides directions for future investigations of alternative activities of TPP II. The obtained signatures provide an efficient bioinformatic tool for the identification of TPP II homologues. Hence, a TPP II sequence homologue from fission yeast, Schizosaccharomyces pombe, was identified and demonstrated to encode the TPP II-like protein previously reported as multicorn. Furthermore, an homologous protein was found in the prokaryote Blastopirellula marina, albeit the TPP II function was apparently not conserved. This gene is probably the result of a rare gene transfer from eukaryote to prokaryote.


Protides of the Biological Fluids#R##N#Proceedings of the Thirty-Fifth Colloquium, 1987 | 1987

DEGRADATION OF LEU- AND MET-ENKEPHALIN AND THEIR C-TERMINAL EXTENSIONS BY TRIPEPTIDYL PEPTIDASE II

Fred Nyberg; Rose-Marie Bälöw; Birgitta Tomkinson; Örjan Zetterqvist

ABSTRACT In this paper, we report the degradation of enkephalins and C-terminal extensions thereof by tripeptidyl peptidase II, previously purified from human erythrocytes. The enzyme thus cleaves the enkephalins at the Gly-Phe bond, releasing the N-terminal fragment Tyr-Gly-Gly. The formation of this fragment was monitored by separation of reaction mixtures with reversed-phase HPLC. In some experiments, the enzyme activity was recorded by following the conversion of the radio-labelled substrate. It was indicated that the C-terminal extensions of the enkephalin sequence was converted at a significantly higher rate than the pentapeptide itself. Furthermore, extended peptides, like the dynorphins, also showed higher potency to inhibit the conversion of a labelled enkephalyl extension.


Archives of Biochemistry and Biophysics | 2014

TPPII, MYBBP1A and CDK2 form a protein–protein interaction network

Jarmila Nahálková; Birgitta Tomkinson

Tripeptidyl-peptidase II (TPPII) is an aminopeptidase with suggested regulatory effects on cell cycle, apoptosis and senescence. A protein-protein interaction study revealed that TPPII physically interacts with the tumor suppressor MYBBP1A and the cell cycle regulator protein CDK2. Mutual protein-protein interaction was detected between MYBBP1A and CDK2 as well. In situ Proximity Ligation Assay (PLA) using HEK293 cells overexpressing TPPII forming highly enzymatically active oligomeric complexes showed that the cytoplasmic interaction frequency of TPPII with MYBBP1A increased with the protein expression of TPPII and using serum-free cell growth conditions. A specific reversible inhibitor of TPPII, butabindide, suppressed the cytoplasmic interactions of TPPII and MYBBP1A both in control HEK293 and the cells overexpressing murine TPPII. The interaction of MYBBP1A with CDK2 was confirmed by in situ PLA in two different mammalian cell lines. Functional link between TPPII and MYBBP1A has been verified by gene expression study during anoikis, where overexpression of TPP II decreased mRNA expression level of MYBBP1A at the cell detachment conditions. All three interacting proteins TPPII, MYBBP1A and CDK2 have been previously implicated in the research for development of tumor-suppressing agents. This is the first report presenting mutual protein-protein interaction network of these proteins.


Brain Research | 2006

Overlapping regional distribution of CCK and TPPII mRNAs in Cynomolgus monkey brain and correlated levels in human cerebral cortex (BA 10).

Diana Radu; Birgitta Tomkinson; Olof Zachrisson; Günther Weber; Jacqueline de Belleroche; Steven R. Hirsch; Nils Lindefors

UNLABELLED Tripeptidyl peptidase II (TPPII) is a high molecular weight exopeptidase important in inactivating extracellular cholecystokinin (CCK). Our aims were to study the anatomical localization of TPPII and CCK mRNA in the Cynomolgus monkey brain as a basis for a possible functional anatomical connection between enzyme (TPPII) and substrate (CCK) and examine if indications of changes in substrate availability in the human brain might be reflected in changes of levels of TPPII mRNA. METHODS mRNA in situ hybridization on postmortem brain from patients having had a schizophrenia diagnosis as compared to controls and on monkey and rat brain slices. RESULTS overlapping distribution patterns of mRNAs for TPPII and CCK in rat and monkey. High amounts of TPPII mRNA are seen in the neocortex, especially in the frontal region and the hippocampus. TPPII mRNA is also present in the basal ganglia and cerebellum where CCK immunoreactivity and/or CCK B receptors have been found in earlier studies, suggesting presence of CCK-ergic afferents from other brain regions. Levels of mRNAs for CCK and TPPII show a positive correlation in postmortem human cerebral cortex Brodmann area (BA) 10. TPPII mRNA might be affected following schizophrenia. DISCUSSION overall TPPII and CCK mRNA show a similar distribution in rat and monkey brain, confirming and extending earlier studies in rodents. In addition, correlated levels of TPPII and CCK mRNA in human BA 10 corroborate a functional link between CCK and TPPII in the human brain.


Molecular & Cellular Proteomics | 2015

Tripeptidyl peptidase II mediates levels of nuclear phosphorylated ERK1 and ERK2

Anne Wiemhoefer; Anita Stargardt; Wouter A. van der Linden; Maria C. Renner; Ronald E. van Kesteren; Jan Stap; Marcel Raspe; Birgitta Tomkinson; Helmut W. Kessels; Huib Ovaa; Herman S. Overkleeft; Bogdan I. Florea; Eric Reits

Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes, including antigen processing, cell growth, DNA repair, and neuropeptide mediated signaling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma cells following selective TPP2 inhibition using the known reversible inhibitor butabindide, as well as a new, more potent, and irreversible peptide phosphonate inhibitor. Our data show that TPP2 inhibition indirectly but rapidly decreases the levels of active, di-phosphorylated extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and mitogenic stimuli. We conclude that TPP2 mediates many important cellular functions by controlling ERK1 and ERK2 phosphorylation. For instance, we show that TPP2 inhibition of neurons in the hippocampus leads to an excessive strengthening of synapses, indicating that TPP2 activity is crucial for normal brain function.


Biochimica et Biophysica Acta | 2012

Exploring the active site of tripeptidyl-peptidase II through studies of pH dependence of reaction kinetics.

Sandra Eklund; Ann-Christin Lindås; Emil Hamnevik; Mikael Widersten; Birgitta Tomkinson

Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (>4MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors. To amend this, we probed the active site by determining the pH dependence of TPP II catalysis. Access to pure enzyme is a prerequisite for kinetic investigations and herein we introduce the first efficient purification system for heterologously expressed mammalian TPP II. The pH dependence of kinetic parameters for hydrolysis of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was determined for murine, human and Drosophila melanogaster TPP II as well as mutant variants thereof. The investigation demonstrated that TPP II, in contrast to subtilisin, has a bell-shaped pH dependence of k(cat)(app)/K(M) probably due to deprotonation of the N-terminal amino group of the substrate at higher pH. Since both the K(M) and k(cat)(app) are lower for cleavage of AAA-pNA than for AAF-pNA we propose that the former can bind non-productively to the active site of the enzyme, a phenomenon previously observed with some substrates for subtilisin. Two mutant variants, H267A and D387G, showed bell-shaped pH-dependence of k(cat)(app), possibly due to an impaired protonation of the leaving group. This work reveals previously unknown differences between TPP II orthologues and subtilisin as well as features that might be conserved within the entire family of subtilisin-like serine peptidases.

Collaboration


Dive into the Birgitta Tomkinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge