Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birke Andrea Tews is active.

Publication


Featured researches published by Birke Andrea Tews.


Journal of Virology | 2005

The Carboxy-Terminal Sequence of the Pestivirus Glycoprotein Erns Represents an Unusual Type of Membrane Anchor

Christiane Fetzer; Birke Andrea Tews; Gregor Meyers

ABSTRACT The Erns protein is a structural glycoprotein of pestiviruses that lacks a typical membrane anchor sequence and is known to be secreted from the infected cell. However, major amounts of the protein are retained within the cell and attached to the virion by a so far unknown mechanism. Transient-expression studies with cDNA constructs showed that in a steady-state situation, 16% of the protein is found in the supernatant of the transfected cells while 84% appears as intracellular protein. We show here that Erns represents a membrane-bound protein. Membrane binding occurs via the carboxy-terminal region of Erns. By fusion of this sequence to the carboxy terminus of green fluorescent protein (GFP), the subcellular localization of the reporter protein switched from cytosolic to membrane bound. A core sequence of 11 amino acids necessary for membrane binding was elicited in truncation experiments with GFP constructs. However, this peptide is not sufficient to confer membrane anchoring but needs either upstream or downstream accessory sequences. Analyses with different extraction procedures showed that Erns is neither easily stripped from the membrane, like a peripheral membrane protein, nor as tightly membrane bound as a transmembrane protein.


Journal of Biological Chemistry | 2011

Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection

Claire Montpellier; Birke Andrea Tews; Julien Poitrimole; Vera Rocha-Perugini; Valentina D'Arienzo; Julie Potel; Xin A. Zhang; Eric Rubinstein; Jean Dubuisson; Laurence Cocquerel

CD81 is a tetraspanin protein that is involved in several essential cellular functions, as well as in the hepatitis C virus (HCV) infection. CD81 interacts with a high stoichiometry with its partner proteins EWI-2, EWI-2wint, and EWI-F. These latter proteins modify the functions of CD81 and can thereby potentially inhibit infection or modulate cell migration. Here, we characterized the cleavage of EWI-2 leading to the production of EWI-2wint, which has been shown to inhibit HCV infection. We determined the regions of EWI-2/EWI-2wint and CD81 that are important for their interaction and their functionality. More precisely, we identified a glycine zipper motif in the transmembrane domain of EWI-2/EWI-2wint that is essential for the interaction with CD81. In addition, we found that palmitoylation on two juxtamembranous cysteines in the cytosolic tail of EWI-2/EWI-2wint is required for their interaction with CD81 as well as with CD9, another tetraspanin. Thus, we have shown that palmitoylation of a tetraspanin partner protein can influence the interaction with a tetraspanin. We therefore propose that palmitoylation not only of tetraspanins, but also of their partner proteins is important in regulating the composition of complexes in tetraspanin networks. Finally, we identified the regions in CD81 that are necessary for its functionality in HCV entry and we demonstrated that EWI-2wint needs to interact with CD81 to exert its inhibitory effect on HCV infection.


Advances in Virus Research | 2015

The Molecular Biology of Pestiviruses.

Norbert Tautz; Birke Andrea Tews; Gregor Meyers

Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.


Journal of Virology | 2009

Mutation of Cysteine 171 of Pestivirus Erns RNase Prevents Homodimer Formation and Leads to Attenuation of Classical Swine Fever Virus

Birke Andrea Tews; Eva-Maria Schürmann; Gregor Meyers

ABSTRACT Pestiviruses represent important pathogens of farm animals that have evolved unique strategies and functions to stay within their host populations. Erns, a structural glycoprotein of pestiviruses, exhibits RNase activity and represents a virulence factor of the viruses. Erns forms disulfide linked homodimers that are found in virions and virus-infected cells. Mutation or deletion of cysteine 171, the residue engaged in intermolecular disulfide bond formation, results in loss of dimerization as tested in coprecipitation and native protein gel electrophoresis analyses. Nevertheless, stable virus mutants with changes affecting cysteine codon 171 could be recovered in tissue culture. These mutants grew almost as well as the parental viruses and exhibited an RNase-positive phenotype. Erns dimerization-negative mutants of classical swine fever virus were found to be attenuated in pigs even though the virus clearly replicated and induced a significant neutralizing antibody response in the animals.


Cellular Microbiology | 2013

EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry

Julie Potel; Patrice Rassam; Claire Montpellier; Laura Kaestner; Elisabeth Werkmeister; Birke Andrea Tews; Cyril Couturier; Costin-Ioan Popescu; Thomas F. Baumert; Eric Rubinstein; Jean Dubuisson; Pierre-Emmanuel Milhiet; Laurence Cocquerel

CD81 is a major receptor for Hepatitis C Virus (HCV). It belongs to the tetraspanin family whose members form dynamic clusters with numerous partner proteins and with one another, forming tetraspanin‐enriched areas in the plasma membrane. In our study, we combined single‐molecule microscopy and biochemistry experiments to investigate the clustering and membrane behaviour of CD81 in the context of cells expressing EWI‐2wint, a natural inhibitor of HCV entry. Interestingly, we found that EWI‐2wint reduces the global diffusion of CD81 molecules due to a decrease of the diffusion rate of mobile CD81molecules and an increase in the proportion of confined molecules. Indeed, we demonstrated that EWI‐2wint promotes CD81 clustering and confinement in CD81‐enriched areas. In addition, we showed that EWI‐2wint influences the colocalization of CD81 with Claudin‐1 – a co‐receptor required for HCV entry. Together, our results indicate that a change in membrane partitioning of CD81 occurs in the presence of EWI‐2wint. This study gives new insights on the mechanism by which HCV enters into its target cells, namely by exploiting the dynamic properties of CD81.


Journal of Biological Chemistry | 2007

The pestivirus glycoprotein Erns is anchored in plane in the membrane via an amphipathic helix.

Birke Andrea Tews; Gregor Meyers

Erns is a structural glycoprotein of pestiviruses found to be attached to the virion and to membranes within infected cells via its COOH terminus, although it lacks a hydrophobic anchor sequence. The COOH-terminal sequence was hypothesized to fold into an amphipathic α-helix. Alanine insertion scanning revealed that the ability of the Erns COOH terminus to bind membranes is considerably reduced by the insertion of a single amino acid at a wide variety of positions. Mutations decreasing the hydrophobicity of the apolar face of the putative helix led to reduction of membrane association. Proteinase K protection assays showed that Erns translated in vitro in the presence of microsomal membranes was protected, whereas a mutant with an artificial transmembrane region and a short cytosolic tag was shortened by the protease treatment. A tag fused to the COOH terminus of wild type Erns was not accessible for antibodies within digitonin-permeabilized cells, but the variant with the tag located downstream of the artificial transmembrane region was detected under the same conditions. These results are in accordance with the model that the COOH-terminal membrane anchor of Erns represents an amphipathic helix embedded in plane into the membrane. The integrity of the membrane anchor was found to be important for recovery of infectious virus.


Journal of Virology | 2012

Structural basis of ligand interactions of the large extracellular domain of tetraspanin CD81

Sundaresan Rajesh; Pooja Sridhar; Birke Andrea Tews; Lucie Fénéant; Laurence Cocquerel; Douglas G. Ward; Fedor Berditchevski; Michael Overduin

ABSTRACT Hepatitis C virus (HCV) causes chronic liver disease, cirrhosis, and primary liver cancer. Despite 130 million people being at risk worldwide, no vaccine exists, and effective therapy is limited by drug resistance, toxicity, and high costs. The tetraspanin CD81 is an essential entry-level receptor required for HCV infection of hepatocytes and represents a critical target for intervention. In this study, we report the first structural characterization of the large extracellular loop of CD81, expressed in mammalian cells and studied in physiological solutions. The HCV E2 glycoprotein recognizes CD81 through a dynamic loop on the helical bundle, which was shown by nuclear magnetic resonance (NMR) spectroscopy to adopt a conformation distinct from that seen in crystals. A novel membrane binding interface was revealed adjacent to the exposed HCV interaction site in the extracellular loop of CD81. The binding pockets for two proposed inhibitors of the CD81-HCV interaction, namely, benzyl salicylate and fexofenadine, were shown to overlap the HCV and membrane interaction sites. Although the dynamic loop region targeted by these compounds presents challenges for structure-based design, the NMR assignments enable realistic screening and validation of ligands. Together, these data provide an improved avenue for developing potent agents that specifically block CD81-HCV interaction and also pave a way for elucidating the recognition mechanisms of diverse tetraspanins.


Journal of Virology | 2015

Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion

Pierre Falson; Birke Bartosch; Khaled Alsaleh; Birke Andrea Tews; Antoine Loquet; Yann Ciczora; Laura Riva; Cédric Montigny; Claire Montpellier; Gilles Duverlie; Eve-Isabelle Pécheur; Marc le Maire; François-Loïc Cosset; Jean Dubuisson; François Penin

ABSTRACT In hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1–TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein. IMPORTANCE HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1 could be the protein responsible for the process of fusion between viral and cellular membranes. Here we investigated the oligomeric state of HCV envelope glycoproteins. We demonstrate that E1 forms functional trimers after virion assembly and that in addition to the requirement for E2, a determinant for this oligomerization is present in a conserved GxxxG motif located within the E1 transmembrane domain. Taken together, these results indicate that a rearrangement of E1E2 heterodimer complexes likely occurs during the assembly of HCV particles to yield a trimeric form of the E1E2 heterodimer. Gaining structural information on this trimer will be helpful for the design of an anti-HCV vaccine.


Viruses | 2010

Last Stop Before Exit – Hepatitis C Assembly and Release as Antiviral Drug Targets

Birke Andrea Tews; Costin-Ioan Popescu; Jean Dubuisson

Chronic Hepatitis C infection is a global health problem. While primary infection is often inapparent, it becomes chronic in most cases. Chronic infection with Hepatitis C virus (HCV) frequently leads to liver cirrhosis or liver cancer. Consequently, HCV infection is one of the leading causes for liver transplantation in industrialized countries. Current treatment is not HCV specific and is only effective in about half of the infected patients. This situation underlines the need for new antivirals against HCV. To develop new and more efficient drugs, it is essential to specifically target the different steps of the viral life cycle. Of those steps, the targeting of HCV assembly has the potential to abolish virus production. This review summarizes the advances in our understanding of HCV particle assembly and the identification of new antiviral targets of potential interest in this late step of the HCV life cycle.


Methods of Molecular Biology | 2017

Self-Replicating RNA

Birke Andrea Tews; Gregor Meyers

Self-replicating RNA derived from the genomes of positive strand RNA viruses represents a powerful tool for both molecular studies on virus biology and approaches to novel safe and effective vaccines. The following chapter summarizes the principles how such RNAs can be established and used for design of vaccines. Due to the large variety of strategies needed to circumvent specific pitfalls in the design of such constructs the technical details of the experiments are not described here but can be found in the cited literature.

Collaboration


Dive into the Birke Andrea Tews's collaboration.

Top Co-Authors

Avatar

Gregor Meyers

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Potel

Pasteur Institute of Lille

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birke Bartosch

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge