Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Biswanath Jana is active.

Publication


Featured researches published by Biswanath Jana.


FEBS Journal | 2009

Physicochemical properties and distinct DNA binding capacity of the repressor of temperate Staphylococcus aureus phage φ11

Tridib Ganguly; Malabika Das; Amitava Bandhu; Palas K. Chanda; Biswanath Jana; Rajkrishna Mondal; Subrata Sau

The repressor protein and cognate operator DNA of any temperate Staphylococcus aureus phage have not been investigated in depth, despite having the potential to enrich the molecular biology of the staphylococcal system. In the present study, using the extremely pure repressor of temperate Staphylococcus aureus phage φ11 (CI), we demonstrate that CI is composed of α‐helix and β‐sheet to a substantial extent at room temperature, possesses two domains, unfolds at temperatures above 39 °C and binds to two sites in the φ11 cI‐cro intergenic region with variable affinity. The above CI binding sites harbor two homologous 15 bp inverted repeats (O1 and O2), which are spaced 18 bp apart. Several guanine bases located in and around O1 and O2 demonstrate interaction with CI, indicating that these 15 bp sites are used as operators for repressor binding. CI interacted with O1 and O2 in a cooperative manner and was found to bind to operator DNA as a homodimer. Interestingly, CI did not show appreciable binding to another homologous 15 bp site (O3) that was located in the same primary immunity region as O1 and O2. Taken together, these results suggest that φ11 CI and the φ11 CI–operator complex resemble significantly those of the lambdoid phages at the structural level. The mode of action of φ11 CI, however, may be distinct from that of the repressor proteins of λ and related phages.


Biochemistry | 2012

Domain Structure and Denaturation of a Dimeric Mip-like Peptidyl-Prolyl cis–trans Isomerase from Escherichia coli

Biswanath Jana; Amitava Bandhu; Rajkrishna Mondal; Anindya Biswas; Keya Sau; Subrata Sau

FKBP22, a protein expressed by Escherichia coli, possesses PPIase (peptidyl-prolyl cis-trans isomerase) activity, binds FK506 (an immunosuppressive drug), and shares homology with Legionella Mip (a virulence factor) and its related proteins. To understand the domain structure and the folding-unfolding mechanism of Mip-like proteins, we investigated a recombinant E. coli FKBP22 (His-FKBP22) as a model protein. Limited proteolysis indicated that His-FKBP22 harbors an N-terminal domain (NTD), a C-terminal domain (CTD), and a long flexible region linking the two domains. His-FKBP22, NTD(+) (NTD with the entire flexible region), and CTD(+) (CTD with a truncated flexible region) were unfolded by a two-state mechanism in the presence of urea. Urea induced the swelling of dimeric His-FKBP22 molecules at the pretransition state but dissociated it at the early transition state. In contrast, guanidine hydrochloride (GdnCl)-induced equilibrium unfolding of His-FKBP22 or NTD(+) and CTD(+) seemed to follow three-step and two-step mechanisms, respectively. Interestingly, the intermediate formed during the unfolding of His-FKBP22 with GdnCl was not a molten globule but was thought to be composed of the partially unfolded dimeric as well as various multimeric His-FKBP22 molecules. Dimeric His-FKBP22 did not dissociate gradually with increasing concentrations of GdnCl. Very low GdnCl concentrations also had little effect on the molecular dimensions of His-FKBP22. Unfolding with either denaturant was found to be reversible, as refolding of the unfolded His-FKBP22 completely, or nearly completely, restored the structure and function of the protein. Additionally, denaturation of His-FKBP22 appeared to begin at the CTD(+).


PLOS ONE | 2015

Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end.

Avisek Mahapa; Sukhendu Mandal; Anindya Biswas; Biswanath Jana; Soumitra Polley; Subrata Sau; Keya Sau

SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.


Journal of Basic Microbiology | 2010

Characterization of an unusual cold shock protein from Staphylococcus aureus.

Palas K. Chanda; Amitava Bandhu; Biswanath Jana; Rajkrishna Mondal; Tridib Ganguly; Keya Sau; Chia Y. Lee; Gopal Chakrabarti; Subrata Sau

Of the three cold shock proteins expressed by Staphylococcus aureus, CspC is induced poorly by cold but strongly by various antibiotics and toxic chemicals. Using a purified CspC, here we demonstrate that it exists as a monomer in solution, possesses primarily β‐sheets, and bears substantial structural similarity with other bacterial Csps. Aggregation of CspC was initiated rapidly at temperatures above 40 °C, whereas, the Gibbs free energy of stabilization of CspC at 0 M GdmCl was estimated to be +1.6 kcal mol–1, indicating a less stable protein. Surprisingly, CspC showed stable binding with ssDNA carrying a stretch of more than three thymine bases and binding with such ssDNA had not only stabilized CspC against proteolytic degradation but also quenched the fluorescence intensity from its exposed Trp residue. Analysis of quenching data indicates that each CspC molecule binds with ∼5 contiguous thymine bases of the above ssDNA and binding is cooperative in nature. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


Biochemistry | 2012

The Helix Located between the Two Domains of a Mip-like Peptidyl-Prolyl cis–trans Isomerase Is Crucial for Its Structure, Stability, and Protein Folding Ability

Biswanath Jana; Subrata Sau

FKBP22, a PPIase (peptidyl-prolyl cis-trans isomerase) produced by Escherichia coli, binds FK506 and rapamycin (both immunosuppressive drugs), shares significant homology with the Mip-like virulence factors, and has been thought to carry a long α-helix (namely α3) between its two domains. To understand whether the length of helix α3 plays any role in the structure, function, and stability of FKBP22-like proteins, we studied a recombinant E. coli FKBP22 (rFKBP22) and its four helix α3 mutant variants by various in vitro probes. Of the helix α3 mutants, two were deletion mutants (rFKBP22D5 and rFKBP22D30), whereas the two others were insertion mutants (rFKBP22I3 and rFKBP22I6). Our investigations revealed that the molecular dimensions, dimerization efficiencies, secondary structures, tertiary structures, stabilities, and protein folding abilities of all mutant proteins are different from those of rFKBP22. Conversely, the rapamycin binding affinities of the mutant proteins were affected very little. Urea-induced unfolding of each protein followed a two-state mechanism and was reversible in nature. Interestingly, rFKBP22D30 was the least stable, whereas rFKBP22I3 appeared to be the most stable of the five proteins. The data together suggest that length of helix α3 contributes significantly to the preservation of the structure, function, and stability of E. coli FKBP22.


PLOS ONE | 2014

Inhibitor-Induced Conformational Stabilization and Structural Alteration of a Mip-Like Peptidyl Prolyl cis-trans Isomerase and Its C-Terminal Domain

Soumitra Polley; Biswanath Jana; Gopal Chakrabarti; Subrata Sau

FKBP22, an Escherichia coli-encoded PPIase (peptidyl-prolyl cis-trans isomerase) enzyme, shares substantial identity with the Mip-like pathogenic factors, caries two domains, exists as a dimer in solution and binds some immunosuppressive drugs (such as FK506 and rapamycin) using its C-terminal domain (CTD). To understand the effects of these drugs on the structure and stability of the Mip-like proteins, rFKBP22 (a chimeric FKBP22) and CTD+ (a CTD variant) have been studied in the presence and absence of rapamycin using different probes. We demonstrated that rapamycin binding causes minor structural alterations of rFKBP22 and CTD+. Both the proteins (equilibrated with rapamycin) were unfolded via the formation of intermediates in the presence of urea. Further study revealed that thermal unfolding of both rFKBP22 and rapamycin-saturated rFKBP22 occurred by a three-state mechanism with the synthesis of intermediates. Intermediate from the rapamycin-equilibrated rFKBP22 was formed at a comparatively higher temperature. All intermediates carried substantial extents of secondary and tertiary structures. Intermediate resulted from the thermal unfolding of rFKBP22 existed as the dimers in solution, carried an increased extent of hydrophobic surface and possessed relatively higher rapamycin binding activity. Despite the formation of intermediates, both the thermal and urea-induced unfolding reactions were reversible in nature. Unfolding studies also indicated the considerable stabilization of both proteins by rapamycin binding. The data suggest that rFKBP22 or CTD+ could be exploited to screen the rapamycin-like inhibitors in the future.


PLOS ONE | 2016

A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus.

Sukhendu Mandal; Avisek Mahapa; Anindya Biswas; Biswanath Jana; Soumitra Polley; Keya Sau; Subrata Sau

Triton X-100 (TX-100), a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA) and its derivative (C9W) have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.


Bacteriophage | 2012

Biochemical characterization of L1 repressor mutants with altered operator DNA binding activity.

Amitava Bandhu; Tridib Ganguly; Biswanath Jana; Amritangshu Chakravarty; Anindya Biswas; Subrata Sau

A mycobacteriophage-specific repressor with the enhanced operator DNA binding activity at 32°C and no activity at 42°C has not been generated yet though it has potential in developing a temperature-controlled expression vector for mycobacterial system. To create such an invaluable repressor, here we have characterized four substitution mutants of mycobacteriophage L1 repressor by various probes. The W69C repressor mutant displayed no operator DNA binding activity, whereas, P131L repressor mutant exhibited very little DNA binding at 32°C. In contrast, both E36K and E39Q repressor mutants showed significantly higher DNA binding activity at 32°C, particularly, under in vivo conditions. Various mutations also had different effects on the structure, stability and the dimerization ability of L1 repressor. While the W69C mutant possessed a distorted tertiary structure, the P131L mutant dimerized poorly in solution at 32°C. Interestingly, both these mutants lost their two-domain structure and aggregated rapidly at 42°C. Of the native and mutant L1 repressor proteins, W69C and E36K mutants appeared to be the least stable at 32°C. Studies together suggest that the mutants, particularly P131L and E39Q mutants, could be used for creating a high affinity temperature-sensitive repressor in the future.


Bioinformation | 2017

Identification and characterization of a cyclosporin binding cyclophillin from Staphylococcus aureus Newman

Soumitra Polley; Soham Seal; Avisek Mahapa; Biswanath Jana; Anindya Biswas; Sukhendu Mandal; Debabrata Sinha; Keya Sau; Subrata Sau

Cyclophilins, a class of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes, are inhibited by cyclosporin A (CsA), an immunosuppressive drug. Staphylococcus aureus Newman, a pathogenic bacterium, carries a gene for encoding a putative cyclophilin (SaCyp). SaCyp shows significant homology with other cyclophilins at the sequence level. A three-dimensional model structure of SaCyp harbors a binding site for CsA. To verify whether SaCyp possesses both the PPIase activity and the CsA binding ability, we have purified and investigated a recombinant SaCyp (rCyp) using various in vitro tools. Our RNase T1 refolding assay indicates that rCyp has a substantial extent of PPIase activity. rCyp that exists as a monomer in the aqueous solution is truly a cyclophilin as its catalytic activity specifically shows sensitivity to CsA. rCyp appears to bind CsA with a reasonably high affinity. Additional investigations reveal that binding of CsA to rCyp alters its structure and shape to some extent. Both rCyp and rCyp-CsA are unfolded via the formation of at least one intermediate in the presence of guanidine hydrochloride. Unfolding study also indicates that there is substantial extent of thermodynamic stabilization of rCyp in the presence of CsA as well. The data suggest that rCyp may be exploited to screen the new antimicrobial agents in the future.


Biochemistry | 2010

Regions and residues of an asymmetric operator DNA interacting with the monomeric repressor of temperate mycobacteriophage L1.

Amitava Bandhu; Tridib Ganguly; Biswanath Jana; Rajkrishna Mondal; Subrata Sau

Collaboration


Dive into the Biswanath Jana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keya Sau

Haldia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avisek Mahapa

Haldia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge