Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keya Sau is active.

Publication


Featured researches published by Keya Sau.


Journal of Bacteriology | 2011

Staphylococcus aureus ClpC Divergently Regulates Capsule via sae and codY in Strain Newman but Activates Capsule via codY in Strain UAMS-1 and in Strain Newman with Repaired saeS

Thanh T. Luong; Keya Sau; Christelle M. Roux; Subrata Sau; Paul M. Dunman; Chia Y. Lee

ClpC is an ATPase chaperone found in most Gram-positive low-GC bacteria. It has been recently reported that ClpC affected virulence gene expression in Staphylococcus aureus. Here we report that ClpC regulates transcription of the cap operon and accumulation of capsule, a major virulence factor for S. aureus. As virulence genes are regulated by a complex regulatory network in S. aureus, we have used capsule as a model to understand this regulation. By microarray analyses of strain Newman, we found that ClpC strongly activates transcription of the sae operon, whose products are known to negatively regulate capsule synthesis in this strain. Further studies indicated that ClpC repressed capsule production by activating the sae operon in strain Newman. Interestingly, the clpC gene cloned into a multiple-copy plasmid vector exhibited an activation phenotype, suggesting that ClpC overexpression has a net positive effect. In the absence of sae function, by either deletion or correction of a native mutation within saeS, we found that ClpC had a positive effect on capsule production. Indeed, in the UAMS-1 strain, which does not have the saeS mutation, ClpC functioned as an activator of capsule production. Our microarray analyses of strain Newman also revealed that CodY, a repressor of capsule production, was repressed by ClpC. Using genetic approaches, we showed that CodY functioned downstream of ClpC, leading to capsule activation both in Newman and in UAMS-1. Thus, ClpC functions in two opposite pathways in capsule regulation in strain Newman but functions as a positive activator in strain UAMS-1.


Journal of Basic Microbiology | 2009

Antibiotics, arsenate and H2O2 induce the promoter of Staphylococcus aureus cspC gene more strongly than cold.

Palas K. Chanda; Rajkrishna Mondal; Keya Sau; Subrata Sau

Proteins expressed by the bacterial cold shock genes are highly conserved at sequence level and perform various biological functions in both the cold‐stressed and normal cells. To study the effects of various agents on the cold shock genes of Staphylococcus aureus, we have cloned the upstream region of cspC from S. aureus Newman and found that the above region possesses appreciable promoter (Pc) activity even at 37 °C. A reporter S. aureus strain CHANDA2, constructed by inserting the Pc ‐lacZ transcriptional fusion into S. aureus RN4220 genome, was found to express very low level of β ‐galactosidase after cold shock, indicating that low temperature induces Pc very weakly. Interestingly, transcription from Pc was induced very strongly by several antibiotics, hydrogen peroxide and arsenate salt. Cold shock proteins expressed by S. aureus are highly identical at sequence level and bear single‐strand nucleic acid binding motifs. A 16 nt downstream box and a 13 nt upstream box were identified at the downstream of initiation codon and at the upstream of ribosome binding site of csp transcripts. Their roles in S. aureus cold shock gene expression have been discussed elaborately. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


Biochemistry | 2012

Domain Structure and Denaturation of a Dimeric Mip-like Peptidyl-Prolyl cis–trans Isomerase from Escherichia coli

Biswanath Jana; Amitava Bandhu; Rajkrishna Mondal; Anindya Biswas; Keya Sau; Subrata Sau

FKBP22, a protein expressed by Escherichia coli, possesses PPIase (peptidyl-prolyl cis-trans isomerase) activity, binds FK506 (an immunosuppressive drug), and shares homology with Legionella Mip (a virulence factor) and its related proteins. To understand the domain structure and the folding-unfolding mechanism of Mip-like proteins, we investigated a recombinant E. coli FKBP22 (His-FKBP22) as a model protein. Limited proteolysis indicated that His-FKBP22 harbors an N-terminal domain (NTD), a C-terminal domain (CTD), and a long flexible region linking the two domains. His-FKBP22, NTD(+) (NTD with the entire flexible region), and CTD(+) (CTD with a truncated flexible region) were unfolded by a two-state mechanism in the presence of urea. Urea induced the swelling of dimeric His-FKBP22 molecules at the pretransition state but dissociated it at the early transition state. In contrast, guanidine hydrochloride (GdnCl)-induced equilibrium unfolding of His-FKBP22 or NTD(+) and CTD(+) seemed to follow three-step and two-step mechanisms, respectively. Interestingly, the intermediate formed during the unfolding of His-FKBP22 with GdnCl was not a molten globule but was thought to be composed of the partially unfolded dimeric as well as various multimeric His-FKBP22 molecules. Dimeric His-FKBP22 did not dissociate gradually with increasing concentrations of GdnCl. Very low GdnCl concentrations also had little effect on the molecular dimensions of His-FKBP22. Unfolding with either denaturant was found to be reversible, as refolding of the unfolded His-FKBP22 completely, or nearly completely, restored the structure and function of the protein. Additionally, denaturation of His-FKBP22 appeared to begin at the CTD(+).


PLOS ONE | 2015

Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end.

Avisek Mahapa; Sukhendu Mandal; Anindya Biswas; Biswanath Jana; Soumitra Polley; Subrata Sau; Keya Sau

SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.


Journal of Basic Microbiology | 2010

Characterization of an unusual cold shock protein from Staphylococcus aureus.

Palas K. Chanda; Amitava Bandhu; Biswanath Jana; Rajkrishna Mondal; Tridib Ganguly; Keya Sau; Chia Y. Lee; Gopal Chakrabarti; Subrata Sau

Of the three cold shock proteins expressed by Staphylococcus aureus, CspC is induced poorly by cold but strongly by various antibiotics and toxic chemicals. Using a purified CspC, here we demonstrate that it exists as a monomer in solution, possesses primarily β‐sheets, and bears substantial structural similarity with other bacterial Csps. Aggregation of CspC was initiated rapidly at temperatures above 40 °C, whereas, the Gibbs free energy of stabilization of CspC at 0 M GdmCl was estimated to be +1.6 kcal mol–1, indicating a less stable protein. Surprisingly, CspC showed stable binding with ssDNA carrying a stretch of more than three thymine bases and binding with such ssDNA had not only stabilized CspC against proteolytic degradation but also quenched the fluorescence intensity from its exposed Trp residue. Analysis of quenching data indicates that each CspC molecule binds with ∼5 contiguous thymine bases of the above ssDNA and binding is cooperative in nature. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


PLOS ONE | 2016

A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus.

Sukhendu Mandal; Avisek Mahapa; Anindya Biswas; Biswanath Jana; Soumitra Polley; Keya Sau; Subrata Sau

Triton X-100 (TX-100), a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA) and its derivative (C9W) have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.


Protein Journal | 2018

Determining the Roles of a Conserved α-Helix in a Global Virulence Regulator from Staphylococcus aureus

Avisek Mahapa; Sukhendu Mandal; Debabrata Sinha; Subrata Sau; Keya Sau

SarA, a pleiotropic transcription regulator, is encoded by Staphylococcus aureus, a pathogenic bacterium. The expression of many virulence and non-virulence genes in S. aureus is modulated by this regulator. Structural studies have shown it to be a winged-helix DNA-binding protein carrying two monomers. Each SarA monomer is composed of five α-helices (α1–α5), three β-strands (β1–β3) and multiple loops. The putative DNA binding region of SarA is constituted with α3, α4, β2, and β3, whereas, its dimerization seems to occur using α1, α2, and α5. Interestingly, many SarA-like proteins are dimeric and use three or more helices for their dimerization. To clearly understand the roles of helix α1 in the dimerization, we have constructed and purified a SarA mutant (Δα1) that lacks helix α1. Our in-depth studies with Δα1 indicate that the helix α1 is critical for preserving the structure, DNA binding activity and thermodynamic stability of SarA. However, the helix has little affected its dimerization ability. Possible reasons for such anomaly have been discussed at length.


PLOS ONE | 2018

A staphylococcal anti-sigma factor possesses a single-domain, carries different denaturant-sensitive regions and unfolds via two intermediates

Debabrata Sinha; Rajkrishna Mondal; Avisek Mahapa; Keya Sau; Rajagopal Chattopadhyaya; Subrata Sau

RsbW, an anti-sigma factor possessing kinase activity, is expressed by many Gram-positive bacteria including Staphylococcus aureus. To obtain clues about the domain structure and the folding-unfolding mechanism of RsbW, we have elaborately studied rRsbW, a recombinant S. aureus RsbW. Sequence analysis of the protein fragments, generated by the limited proteolysis of rRsbW, has proposed it to be a single-domain protein. The unfolding of rRsbW in the presence of GdnCl or urea was completely reversible in nature and occurred through the formation of at least two intermediates. The structure, shape, and the surface hydrophobicity of no intermediate completely matches with those of other intermediates or the native rRsbW. Interestingly, one of the intermediates, formed in the presence of less GdnCl concentrations, has a molten globule-like structure. Conversely, all of the intermediates, like native rRsbW, exist as dimers in aqueous solution. The putative molten globule and the urea-generated intermediates also have retained some kinase activity. Additionally, the putative ATP binding site/catalytic site of rRsbW shows higher denaturant sensitivity than the tentative dimerization region of this enzyme.


International Journal of Biological Macromolecules | 2018

Alanine substitution mutations in the DNA binding region of a global staphylococcal virulence regulator affect its structure, function, and stability

Sukhendu Mandal; Semanti Ghosh; Debabrata Sinha; Soham Seal; Avisek Mahapa; Soumitra Polley; Deeya Saha; Keya Sau; Angshuman Bagchi; Subrata Sau

SarA, a winged-helix DNA binding protein, is a global virulence regulator in Staphylococcus aureus. The putative DNA binding region of SarA is located between amino acid residues Leu 53 and Gln 97. Previous studies have demonstrated that residues at positions 84, 88, 89, and 90 are critical for its function. To precisely understand the roles of the DNA binding residues, we have investigated nine mutants of a recombinant SarA (rSarA) along with the rSarA mutants carrying mutations at the above four positions. Of the thirteen mutants, eleven mutants show weaker DNA binding activity in vitro compared to rSarA. As noted earlier, the DNA binding affinity of rSarA was maximally affected due to the mutation at position 84 or 90. Each of the functionally-defective mutants also possesses an altered structure and stability. Additionally, the mutations at positions 84 and 90 have severely affected the formation of hydrogen (H) bonds at the interface between SarA and the cognate DNA. The mutation at position 64 also has perturbed the generation of some interface H-bonds. Therefore, the disruption of H-bonds in the protein-DNA interface and the structural alteration in the protein may be responsible for the reduced DNA binding activity of the mutants.


Bioinformation | 2017

Identification and characterization of a cyclosporin binding cyclophillin from Staphylococcus aureus Newman

Soumitra Polley; Soham Seal; Avisek Mahapa; Biswanath Jana; Anindya Biswas; Sukhendu Mandal; Debabrata Sinha; Keya Sau; Subrata Sau

Cyclophilins, a class of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes, are inhibited by cyclosporin A (CsA), an immunosuppressive drug. Staphylococcus aureus Newman, a pathogenic bacterium, carries a gene for encoding a putative cyclophilin (SaCyp). SaCyp shows significant homology with other cyclophilins at the sequence level. A three-dimensional model structure of SaCyp harbors a binding site for CsA. To verify whether SaCyp possesses both the PPIase activity and the CsA binding ability, we have purified and investigated a recombinant SaCyp (rCyp) using various in vitro tools. Our RNase T1 refolding assay indicates that rCyp has a substantial extent of PPIase activity. rCyp that exists as a monomer in the aqueous solution is truly a cyclophilin as its catalytic activity specifically shows sensitivity to CsA. rCyp appears to bind CsA with a reasonably high affinity. Additional investigations reveal that binding of CsA to rCyp alters its structure and shape to some extent. Both rCyp and rCyp-CsA are unfolded via the formation of at least one intermediate in the presence of guanidine hydrochloride. Unfolding study also indicates that there is substantial extent of thermodynamic stabilization of rCyp in the presence of CsA as well. The data suggest that rCyp may be exploited to screen the new antimicrobial agents in the future.

Collaboration


Dive into the Keya Sau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avisek Mahapa

Haldia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge