Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bjoern M. Reinhard is active.

Publication


Featured researches published by Bjoern M. Reinhard.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits

Svetlana V. Boriskina; Bjoern M. Reinhard

Energy transfer between photons and molecules and between neighboring molecules is ubiquitous in living nature, most prominently in photosynthesis. While energy transfer is efficiently utilized by living systems, its adoption to connect individual components in man-made plasmonic nanocircuits has been challenged by low transfer efficiencies that motivate the development of entirely new concepts for energy transfer. We introduce herein optoplasmonic superlenses that combine the capability of optical microcavities to insulate molecule-photon systems from decohering environmental effects with the superior light nanoconcentration properties of nanoantennas. The proposed structures provide significant enhancement of the emitter radiative rate and efficient long-range transfer of emitted photons followed by subsequent refocusing into nanoscale volumes accessible to near- and far-field detection. Optoplasmonic superlenses are versatile building blocks for optoplasmonic nanocircuits and can be used to construct “dark” single-molecule sensors, resonant amplifiers, nanoconcentrators, frequency multiplexers, demultiplexers, energy converters, and dynamical switches.


Optics Express | 2011

Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates

Svetlana V. Boriskina; Bjoern M. Reinhard

A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strategy of re-configuring plasmonic nanocircuits via locally-addressable photonic elements opens the way to develop chip-integrated optoplasmonic switching architectures, which is crucial for implementation of quantum information nanocircuits.


Applied Physics Letters | 2016

Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers

Ran Zhang; S. Knitter; Seng Fatt Liew; Fiorenzo G. Omenetto; Bjoern M. Reinhard; Hui Cao; L. Dal Negro

We report on plasmon-enhanced random lasing in bio-compatible light emitting Hydroxypropyl Cellulose (HPC) nanofiber networks doped with gold nanoparticles. HPC nanofibers with a diameter of 260 ± 30 nm were synthesized by a one step, cost-effective and facile electrospinning technique from a solution-containing Rhodamine 6G and Au nanoparticles. Nanoparticles of controlled diameters from 10 nm to 80 nm were dispersed inside the nanofibers and optically characterized using photoluminescence, dark-field spectroscopy, and coherent backscattering measurements. Plasmon-enhanced random lasing was demonstrated with a lower threshold than that in dye-doped identical HPC networks without Au nanoparticles. These findings provide an effective approach for plasmon-enhanced random lasers based on a bio-compatible host matrix that is particularly attractive for biophotonic applications such as fluorescence sensing, optical tagging, and detection.


Mbio | 2016

Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins

Yadvinder S. Ahi; Shu Zhang; Yashna Thappeta; Audrey Denman; Amin Feizpour; Suryaram Gummuluru; Bjoern M. Reinhard; Delphine Muriaux; Matthew J. Fivash; Alan Rein

ABSTRACT Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. IMPORTANCE Many murine leukemia viruses (MLVs) encode a protein called “glycogag.” The function of glycogag is not fully understood, but it can assist HIV-1 replication in the absence of the HIV-1 protein Nef under some circumstances. In turn, Nef counteracts the cellular protein Serinc5. Glycogag enhances the infectivity of MLVs with some but not all MLV Env proteins (which mediate viral entry into the host cell upon binding to cell surface receptors). We now report that glycogag acts by enhancing viral entry and that, like Nef, glycogag antagonizes Serinc5. Surprisingly, the effects of glycogag and Serinc5 upon the entry and infectivity of MLV particles carrying an Ebolavirus glycoprotein are the opposite of those observed with the MLV Env proteins. The unrelated S2 protein of equine infectious anemia virus (EIAV) is functionally analogous to glycogag in our experiments. Thus, three retroviruses (HIV-1, MLV, and EIAV) have independently evolved accessory proteins that counteract Serinc5. Many murine leukemia viruses (MLVs) encode a protein called “glycogag.” The function of glycogag is not fully understood, but it can assist HIV-1 replication in the absence of the HIV-1 protein Nef under some circumstances. In turn, Nef counteracts the cellular protein Serinc5. Glycogag enhances the infectivity of MLVs with some but not all MLV Env proteins (which mediate viral entry into the host cell upon binding to cell surface receptors). We now report that glycogag acts by enhancing viral entry and that, like Nef, glycogag antagonizes Serinc5. Surprisingly, the effects of glycogag and Serinc5 upon the entry and infectivity of MLV particles carrying an Ebolavirus glycoprotein are the opposite of those observed with the MLV Env proteins. The unrelated S2 protein of equine infectious anemia virus (EIAV) is functionally analogous to glycogag in our experiments. Thus, three retroviruses (HIV-1, MLV, and EIAV) have independently evolved accessory proteins that counteract Serinc5.


Journal of Physical Chemistry C | 2018

Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals

Min Xi; Bjoern M. Reinhard

Sn-doped indium oxide (ITO) nanocrystals (NC) provide tunable localized surface plasmon resonance in the mid-infrared. To evaluate the applicability of these n-doped plasmonic semiconductors in field-enhanced spectroscopies, it is necessary to assess how the low, free-electron density affects the E-field localization and plasmon coupling in NC films when compared to metal nanoparticles (NP). In this article, we investigate plasmon coupling between approximate 6 nm diameter ITO NC on the collective resonance and quantify the effect of the electromagnetic field enhancement on the absorbance signal of surface-attached ligands in NC films and monolayers with different ratios of doped and undoped indium oxide NC.


ACS Sensors | 2017

Membrane Fluidity Sensing on the Single Virus Particle Level with Plasmonic Nanoparticle Transducers

Amin Feizpour; David N Stelter; Crystal Wong; Hisashi Akiyama; Suryaram Gummuluru; T. Keyes; Bjoern M. Reinhard

Viral membranes are nanomaterials whose fluidity depends on their composition, in particular, the cholesterol (chol) content. As differences in the membrane composition of individual virus particles can lead to different intracellular fates, biophysical tools capable of sensing the membrane fluidity on the single-virus level are required. In this manuscript, we demonstrate that fluctuations in the polarization of light scattered off gold or silver nanoparticle (NP)-labeled virus-like-particles (VLPs) encode information about the membrane fluidity of individual VLPs. We developed plasmonic polarization fluctuation tracking microscopy (PFTM) which facilitated the investigation of the effect of chol content on the membrane fluidity and its dependence on temperature, for the first time on the single-VLP level. Chol extraction studies with different methyl-β-cyclodextrin (MβCD) concentrations yielded a gradual decrease in polarization fluctuations as a function of time. The rate of chol extraction for individual VLPs showed a broad spread, presumably due to differences in the membrane composition for the individual VLPs, and this heterogeneity increased with decreasing MβCD concentration.


ACS Applied Materials & Interfaces | 2018

Plasmonic Nanotrough Networks for Scalable Bacterial Raman Biosensing

Ran Zhang; Yan Hong; Bjoern M. Reinhard; Pinghua Liu; Ren Wang; Luca Dal Negro

We demonstrate a novel approach for fabricating surface enhanced Raman scattering (SERS) substrates for single bacterial biosensing based on Ag cylindrical nanotrough networks (CNNs). This approach is developed with large scalability by leveraging a cellulose nanofiber template fabrication via facile electrospinning. Specifically, a concave nanotrough structure consisting of interconnected concave Ag nanoshells is demonstrated by depositing a thin layer of Ag atop a sacrificial electrospun nanofiber template and then completely removing the cellulose core in water. Our investigations of the scattering properties and SERS performances of single isolated Ag nanotroughs of different diameters reveal that nanotrough-based substrates provide tunable optical responses and enhanced SERS intensities. Further, Ag CNNs are fabricated in highly interconnected networks that yield reproducible SERS signals for molecular monolayers and whole bacterial cells, enabling rapid spectral discrimination between different bacterial strains. Finally, by performing principal component analysis on a large number of measured SERS spectra (40 spectra per bacterium), we demonstrate successful spectral discrimination between two types of Escherichia coli ( E. coli) bacteria, that is, E. coli K12 with its derivative E. coli DH 5α and E. coli BL21(DE3). The demonstrated cost-effective substrates feature several advantages over conventional SERS substrates including environmentally friendly and scalable fabrication compatible with versatile devices and provide an alternative approach to rapid SERS detection and screening of biochemicals.


Journal of Physical Chemistry C | 2009

Monitoring Simultaneous Distance and Orientation Changes in Discrete Dimers of DNA Linked Gold Nanoparticles.

Hong-yun Wang; Bjoern M. Reinhard


Nanoscale | 2012

Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery

Svetlana V. Boriskina; Bjoern M. Reinhard


Archive | 2010

Engineered SERS substrates employing nanoparticle cluster arrays with multiscale signal enhancement

Bjoern M. Reinhard; Luca Dal Negro

Collaboration


Dive into the Bjoern M. Reinhard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Svetlana V. Boriskina

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Rein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge