Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn H. Junker is active.

Publication


Featured researches published by Björn H. Junker.


BMC Bioinformatics | 2006

VANTED: A system for advanced data analysis and visualization in the context of biological networks

Björn H. Junker; Christian Klukas; Falk Schreiber

BackgroundRecent advances with high-throughput methods in life-science research have increased the need for automatized data analysis and visual exploration techniques. Sophisticated bioinformatics tools are essential to deduct biologically meaningful interpretations from the large amount of experimental data, and help to understand biological processes.ResultsWe present VANTED, a tool for the v isualization and a nalysis of n etworks with related e xperimental d ata. Data from large-scale biochemical experiments is uploaded into the software via a Microsoft Excel-based form. Then it can be mapped on a network that is either drawn with the tool itself, downloaded from the KEGG Pathway database, or imported using standard network exchange formats. Transcript, enzyme, and metabolite data can be presented in the context of their underlying networks, e. g. metabolic pathways or classification hierarchies. Visualization and navigation methods support the visual exploration of the data-enriched networks. Statistical methods allow analysis and comparison of multiple data sets such as different developmental stages or genetically different lines. Correlation networks can be automatically generated from the data and substances can be clustered according to similar behavior over time. As examples, metabolite profiling and enzyme activity data sets have been visualized in different metabolic maps, correlation networks have been generated and similar time patterns detected. Some relationships between different metabolites were discovered which are in close accordance with the literature.ConclusionVANTED greatly helps researchers in the analysis and interpretation of biochemical data, and thus is a useful tool for modern biological research. VANTED as a Java Web Start Application including a user guide and example data sets is available free of charge at http://vanted.ipk-gatersleben.de.


BMC Bioinformatics | 2006

Exploration of biological network centralities with CentiBiN

Björn H. Junker; Dirk Koschützki; Falk Schreiber

BackgroundThe elucidation of whole-cell regulatory, metabolic, interaction and other biological networks generates the need for a meaningful ranking of network elements. Centrality analysis ranks network elements according to their importance within the network structure and different centrality measures focus on different importance concepts. Central elements of biological networks have been found to be, for example, essential for viability.ResultsCentiBiN (Cent ralities i n Bi ological N etworks) is a tool for the computation and exploration of centralities in biological networks such as protein-protein interaction networks. It computes 17 different centralities for directed or undirected networks, ranging from local measures, that is, measures that only consider the direct neighbourhood of a network element, to global measures. CentiBiN supports the exploration of the centrality distribution by visualising central elements within the network and provides several layout mechanisms for the automatic generation of graphical representations of a network. It supports different input formats, especially for biological networks, and the export of the computed centralities to other tools.ConclusionCentiBiN helps systems biology researchers to identify crucial elements of biological networks. CentiBiN including a user guide and example data sets is available free of charge at http://centibin.ipk-gatersleben.de/. CentiBiN is available in two different versions: a Java Web Start application and an installable Windows application.


Plant Physiology | 2009

Flux Balance Analysis of Barley Seeds: A Computational Approach to Study Systemic Properties of Central Metabolism

Eva Grafahrend-Belau; Falk Schreiber; Dirk Koschützki; Björn H. Junker

The accumulation of storage compounds is an important aspect of cereal seed metabolism. Due to the agronomical importance of the storage reserves of starch, protein, and oil, the understanding of storage metabolism is of scientific interest, with practical applications in agronomy and plant breeding. To get insight into storage patterning in developing cereal seed in response to environmental and genetic perturbation, a computational analysis of seed metabolism was performed. A metabolic network of primary metabolism in the developing endosperm of barley (Hordeum vulgare), a model plant for temperate cereals, was constructed that includes 257 biochemical and transport reactions across four different compartments. The model was subjected to flux balance analysis to study grain yield and metabolic flux distributions in response to oxygen depletion and enzyme deletion. In general, the simulation results were found to be in good agreement with the main biochemical properties of barley seed storage metabolism. The predicted growth rate and the active metabolic pathway patterns under anoxic, hypoxic, and aerobic conditions predicted by the model were in accordance with published experimental results. In addition, the model predictions gave insight into the potential role of inorganic pyrophosphate metabolism to maintain seed metabolism under oxygen deprivation.


Bioinformatics | 2005

Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber

Ina Koch; Björn H. Junker; Monika Heiner

MOTIVATION Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. RESULTS We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.


Plant Physiology | 2013

Multiscale Metabolic Modeling: Dynamic Flux Balance Analysis on a Whole-Plant Scale

Eva Grafahrend-Belau; Astrid Junker; André Eschenröder; Johannes Müller; Falk Schreiber; Björn H. Junker

A multiscale metabolic modeling approach integrates a static multiorgan flux balance analysis model and a dynamic whole-plant multiscale functional plant model for dynamic flux balance analysis. Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement.


BMC Bioinformatics | 2008

Modularization of biochemical networks based on classification of Petri net t-invariants

Eva Grafahrend-Belau; Falk Schreiber; Monika Heiner; Andrea Sackmann; Björn H. Junker; Stefanie Grunwald; Astrid Speer; Katja Winder; Ina Koch

BackgroundStructural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the systems invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system.MethodsHere, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied.ResultsWe considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability.ConclusionWe propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.


Plant Physiology | 2010

Simulating Plant Metabolic Pathways with Enzyme-Kinetic Models

Kai Schallau; Björn H. Junker

The complexity of metabolic networks and their regulation renders an intuitive analysis of these biological systems a difficult task. Mathematical modeling approaches help to deal with this complexity, making them an important tool for metabolic engineering. Different methods were developed, ranging


Nucleic Acids Research | 2007

MetaCrop: a detailed database of crop plant metabolism

Eva Grafahrend-Belau; Stephan Weise; Dirk Koschützki; Uwe Scholz; Björn H. Junker; Falk Schreiber

MetaCrop is a manually curated repository of high quality information concerning the metabolism of crop plants. This includes pathway diagrams, reactions, locations, transport processes, reaction kinetics, taxonomy and literature. MetaCrop provides detailed information on six major crop plants with high agronomical importance and initial information about several other plants. The web interface supports an easy exploration of the information from overview pathways to single reactions and therefore helps users to understand the metabolism of crop plants. It also allows model creation and automatic data export for detailed models of metabolic pathways therefore supporting systems biology approaches. The MetaCrop database is accessible at http://metacrop.ipk-gatersleben.de.


Bioinformatics | 2009

FBA-SimVis

Eva Grafahrend-Belau; Christian Klukas; Björn H. Junker; Falk Schreiber

Summary: FBA-SimVis is a VANTED plug-in for the constraint-based analysis of metabolic models with special focus on the visual exploration of metabolic flux data resulting from model analysis. The program provides a user-friendly environment for model reconstruction, constraint-based model analysis, and interactive visualization of the simulation results. With the ability to quantitatively analyse metabolic fluxes in an interactive and visual manner, FBA-SimVis supports a comprehensive understanding of constraint-based metabolic flux models in both overview and detail. Availability: Software with manual and tutorials are freely available at http://fbasimvis.ipk-gatersleben.de/ Contact: [email protected] Supplementary information: Examples and supplementary data are available at http://fbasimvis.ipk-gatersleben.de/


Nucleic Acids Research | 2012

MetaCrop 2.0: managing and exploring information about crop plant metabolism

Falk Schreiber; Christian Colmsee; Tobias Czauderna; Eva Grafahrend-Belau; Anja Hartmann; Astrid Junker; Björn H. Junker; Matthias Klapperstück; Uwe Scholz; Stephan Weise

MetaCrop is a manually curated repository of high-quality data about plant metabolism, providing different levels of detail from overview maps of primary metabolism to kinetic data of enzymes. It contains information about seven major crop plants with high agronomical importance and two model plants. MetaCrop is intended to support research aimed at the improvement of crops for both nutrition and industrial use. It can be accessed via web, web services and an add-on to the Vanted software. Here, we present several novel developments of the MetaCrop system and the extended database content. MetaCrop is now available in version 2.0 at http://metacrop.ipk-gatersleben.de.

Collaboration


Dive into the Björn H. Junker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge