Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Astrid Junker is active.

Publication


Featured researches published by Astrid Junker.


BMC Systems Biology | 2012

VANTED v2: a framework for systems biology applications

Hendrik Rohn; Astrid Junker; Anja Hartmann; Eva Grafahrend-Belau; Hendrik Treutler; Matthias Klapperstück; Tobias Czauderna; Christian Klukas; Falk Schreiber

BackgroundExperimental datasets are becoming larger and increasingly complex, spanning different data domains, thereby expanding the requirements for respective tool support for their analysis. Networks provide a basis for the integration, analysis and visualization of multi-omics experimental datasets.ResultsHere we present Vanted (version 2), a framework for systems biology applications, which comprises a comprehensive set of seven main tasks. These range from network reconstruction, data visualization, integration of various data types, network simulation to data exploration combined with a manifold support of systems biology standards for visualization and data exchange. The offered set of functionalities is instantiated by combining several tasks in order to enable users to view and explore a comprehensive dataset from different perspectives. We describe the system as well as an exemplary workflow.ConclusionsVanted is a stand-alone framework which supports scientists during the data analysis and interpretation phase. It is available as a Java open source tool from http://www.vanted.org


Nucleic Acids Research | 2012

Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon.

Gudrun Mönke; Michael Seifert; Jens Keilwagen; Michaela Mohr; Ivo Grosse; Urs Hähnel; Astrid Junker; Bernd Weisshaar; Udo Conrad; Helmut Bäumlein; Lothar Altschmied

The plant-specific, B3 domain-containing transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is an essential component of the regulatory network controlling the development and maturation of the Arabidopsis thaliana seed. Genome-wide chromatin immunoprecipitation (ChIP-chip), transcriptome analysis, quantitative reverse transcriptase–polymerase chain reaction and a transient promoter activation assay have been combined to identify a set of 98 ABI3 target genes. Most of these presumptive ABI3 targets require the presence of abscisic acid for their activation and are specifically expressed during seed maturation. ABI3 target promoters are enriched for G-box-like and RY-like elements. The general occurrence of these cis motifs in non-ABI3 target promoters suggests the existence of as yet unidentified regulatory signals, some of which may be associated with epigenetic control. Several members of the ABI3 regulon are also regulated by other transcription factors, including the seed-specific, B3 domain-containing FUS3 and LEC2. The data strengthen and extend the notion that ABI3 is essential for the protection of embryonic structures from desiccation and raise pertinent questions regarding the specificity of promoter recognition.


Plant Physiology | 2013

Multiscale Metabolic Modeling: Dynamic Flux Balance Analysis on a Whole-Plant Scale

Eva Grafahrend-Belau; Astrid Junker; André Eschenröder; Johannes Müller; Falk Schreiber; Björn H. Junker

A multiscale metabolic modeling approach integrates a static multiorgan flux balance analysis model and a dynamic whole-plant multiscale functional plant model for dynamic flux balance analysis. Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement.


Plant Journal | 2012

Elongation‐related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana

Astrid Junker; Gudrun Mönke; Twan Rutten; Jens Keilwagen; Michael Seifert; Tuyet Minh Nguyen Thi; Jean-Pierre Renou; Sandrine Balzergue; Prisca Viehöver; Urs Hähnel; Jutta Ludwig-Müller; Lothar Altschmied; Udo Conrad; Bernd Weisshaar; Helmut Bäumlein

The transcription factor LEAFY COTYLEDON1 (LEC1) controls aspects of early embryogenesis and seed maturation in Arabidopsis thaliana. To identify components of the LEC1 regulon, transgenic plants were derived in which LEC1 expression was inducible by dexamethasone treatment. The cotyledon-like leaves and swollen root tips developed by these plants contained seed-storage compounds and resemble the phenotypes produced by increased auxin levels. In agreement with this, LEC1 was found to mediate up-regulation of the auxin synthesis gene YUCCA10. Auxin accumulated primarily in the elongation zone at the root-hypocotyl junction (collet). This accumulation correlates with hypocotyl growth, which is either inhibited in LEC1-induced embryonic seedlings or stimulated in the LEC1-induced long-hypocotyl phenotype, therefore resembling etiolated seedlings. Chromatin immunoprecipitation analysis revealed a number of phytohormone- and elongation-related genes among the putative LEC1 target genes. LEC1 appears to be an integrator of various regulatory events, involving the transcription factor itself as well as light and hormone signalling, especially during somatic and early zygotic embryogenesis. Furthermore, the data suggest non-embryonic functions for LEC1 during post-germinative etiolation.


Nucleic Acids Research | 2012

MetaCrop 2.0: managing and exploring information about crop plant metabolism

Falk Schreiber; Christian Colmsee; Tobias Czauderna; Eva Grafahrend-Belau; Anja Hartmann; Astrid Junker; Björn H. Junker; Matthias Klapperstück; Uwe Scholz; Stephan Weise

MetaCrop is a manually curated repository of high-quality data about plant metabolism, providing different levels of detail from overview maps of primary metabolism to kinetic data of enzymes. It contains information about seven major crop plants with high agronomical importance and two model plants. MetaCrop is intended to support research aimed at the improvement of crops for both nutrition and industrial use. It can be accessed via web, web services and an add-on to the Vanted software. Here, we present several novel developments of the MetaCrop system and the extended database content. MetaCrop is now available in version 2.0 at http://metacrop.ipk-gatersleben.de.


Journal of Experimental Botany | 2015

Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions

Adele Muscolo; Astrid Junker; Christian Klukas; Kathleen Weigelt-Fischer; David Riewe; Thomas Altmann

Highlight Automated imaging-based plant phenotyping combined with GC-MS-based metabolite profiling of four lentil accessions differing in their drought and salt tolerance shows common and specific responses and yields characteristic stress markers


Trends in Plant Science | 2010

An engineer's view on regulation of seed development.

Astrid Junker; Anja Hartmann; Falk Schreiber; Helmut Bäumlein

The recently proposed Systems Biology Graphical Notation (SBGN) represents a flexible system of nomenclature for the description of biological networks, comparable to the notation employed by designers of electronic circuits. It allows the uniform and unambiguous display of complex biological information. Here we present an application of SBGN to describe processes occurring during seed development in Arabidopsis thaliana. Representative network maps can be accessed via the open resource RIMAS web portal.


BMC Systems Biology | 2012

FluxMap: A VANTED add-on for the visual exploration of flux distributions in biological networks

Hendrik Rohn; Anja Hartmann; Astrid Junker; Björn H. Junker; Falk Schreiber

BackgroundThe quantification of metabolic fluxes is gaining increasing importance in the analysis of the metabolic behavior of biological systems such as organisms, tissues or cells. Various methodologies (wetlab or drylab) result in sets of fluxes which require an appropriate visualization for interpretation by scientists. The visualization of flux distributions is a necessary prerequisite for intuitive flux data exploration in the context of metabolic networks.ResultsWe present FluxMap, a tool for the advanced visualization and exploration of flux data in the context of metabolic networks. The template-based flux data import assigns flux values and optional quality parameters (e. g. the confidence interval) to biochemical reactions. It supports the discrimination between mass and substance fluxes, such as C- or N-fluxes. After import, flux data mapping and network-based visualization allow the interactive exploration of the dataset. Various visualization options enable the user to adapt layout and network representation according to individual purposes.ConclusionsThe Vanted add-on FluxMap comprises a comprehensive set of functionalities for visualization and advanced visual exploration of flux distributions in biological networks. It is available as a Java open source tool from http://www.vanted.org/fluxmap.


Plant Methods | 2016

Measures for interoperability of phenotypic data: minimum information requirements and formatting

Hanna Ćwiek-Kupczyńska; Thomas Altmann; Daniel Arend; Elizabeth Arnaud; Dijun Chen; Guillaume Cornut; Fabio Fiorani; Wojciech Frohmberg; Astrid Junker; Christian Klukas; Matthias Lange; Cezary Mazurek; Anahita Nafissi; Pascal Neveu; Jan van Oeveren; Cyril Pommier; Hendrik Poorter; Philippe Rocca-Serra; Susanna-Assunta Sansone; Uwe Scholz; Marco van Schriek; Ümit Seren; Björn Usadel; Stephan Weise; Paul J. Kersey; Paweł Krajewski

BackgroundPlant phenotypic data shrouds a wealth of information which, when accurately analysed and linked to other data types, brings to light the knowledge about the mechanisms of life. As phenotyping is a field of research comprising manifold, diverse and time-consuming experiments, the findings can be fostered by reusing and combining existing datasets. Their correct interpretation, and thus replicability, comparability and interoperability, is possible provided that the collected observations are equipped with an adequate set of metadata. So far there have been no common standards governing phenotypic data description, which hampered data exchange and reuse.ResultsIn this paper we propose the guidelines for proper handling of the information about plant phenotyping experiments, in terms of both the recommended content of the description and its formatting. We provide a document called “Minimum Information About a Plant Phenotyping Experiment”, which specifies what information about each experiment should be given, and a Phenotyping Configuration for the ISA-Tab format, which allows to practically organise this information within a dataset. We provide examples of ISA-Tab-formatted phenotypic data, and a general description of a few systems where the recommendations have been implemented.ConclusionsAcceptance of the rules described in this paper by the plant phenotyping community will help to achieve findable, accessible, interoperable and reusable data.


PLOS ONE | 2014

AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance

Vokkaliga T. Harshavardhan; Le Van Son; Christiane Seiler; Astrid Junker; Kathleen Weigelt-Fischer; Christian Klukas; Thomas Altmann; Nese Sreenivasulu; Helmut Bäumlein; Markus Kuhlmann

Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plants moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response.

Collaboration


Dive into the Astrid Junker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge