Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo Hang is active.

Publication


Featured researches published by Bo Hang.


Environmental Health Perspectives | 2011

Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda

Georg E. Matt; Penelope J. E. Quintana; Hugo Destaillats; Lara A. Gundel; Mohamad Sleiman; Brett C. Singer; Peyton Jacob; Neal L. Benowitz; Jonathan P. Winickoff; Virender K. Rehan; Prue Talbot; Suzaynn F. Schick; Jonathan M. Samet; Yinsheng Wang; Bo Hang; Manuela Martins-Green; James F. Pankow; Melbourne F. Hovell

Background: There is broad consensus regarding the health impact of tobacco use and secondhand smoke exposure, yet considerable ambiguity exists about the nature and consequences of thirdhand smoke (THS). Objectives: We introduce definitions of THS and THS exposure and review recent findings about constituents, indoor sorption–desorption dynamics, and transformations of THS; distribution and persistence of THS in residential settings; implications for pathways of exposure; potential clinical significance and health effects; and behavioral and policy issues that affect and are affected by THS. Discussion: Physical and chemical transformations of tobacco smoke pollutants take place over time scales ranging from seconds to months and include the creation of secondary pollutants that in some cases are more toxic (e.g., tobacco-specific nitrosamines). THS persists in real-world residential settings in the air, dust, and surfaces and is associated with elevated levels of nicotine on hands and cotinine in urine of nonsmokers residing in homes previously occupied by smokers. Much still needs to be learned about the chemistry, exposure, toxicology, health risks, and policy implications of THS. Conclusion: The existing evidence on THS provides strong support for pursuing a programmatic research agenda to close gaps in our current understanding of the chemistry, exposure, toxicology, and health effects of THS, as well as its behavioral, economic, and sociocultural considerations and consequences. Such a research agenda is necessary to illuminate the role of THS in existing and future tobacco control efforts to decrease smoking initiation and smoking levels, to increase cessation attempts and sustained cessation, and to reduce the cumulative effects of tobacco use on morbidity and mortality.


Mutagenesis | 2013

Thirdhand smoke causes DNA damage in human cells

Bo Hang; Altaf H. Sarker; Christopher Havel; Saikat Saha; Tapas K. Hazra; Suzaynn F. Schick; Peyton Jacob; Virender K. Rehan; Ahmed Chenna; Divya Sharan; Mohamad Sleiman; Hugo Destaillats; Lara A. Gundel

Exposure to thirdhand smoke (THS) is a newly described health risk. Evidence supports its widespread presence in indoor environments. However, its genotoxic potential, a critical aspect in risk assessment, is virtually untested. An important characteristic of THS is its ability to undergo chemical transformations during aging periods, as demonstrated in a recent study showing that sorbed nicotine reacts with the indoor pollutant nitrous acid (HONO) to form tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-4-(3-pyridyl)butanal (NNA) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The goal of this study was to assess the genotoxicity of THS in human cell lines using two in vitro assays. THS was generated in laboratory systems that simulated short (acute)- and long (chronic)-term exposures. Analysis by liquid chromatography-tandem mass spectrometry quantified TSNAs and common tobacco alkaloids in extracts of THS that had sorbed onto cellulose substrates. Exposure of human HepG2 cells to either acute or chronic THS for 24h resulted in significant increases in DNA strand breaks in the alkaline Comet assay. Cell cultures exposed to NNA alone showed significantly higher levels of DNA damage in the same assay. NNA is absent in freshly emitted secondhand smoke, but it is the main TSNA formed in THS when nicotine reacts with HONO long after smoking takes place. The long amplicon-quantitative PCR assay quantified significantly higher levels of oxidative DNA damage in hypoxanthine phosphoribosyltransferase 1 (HPRT) and polymerase β (POLB) genes of cultured human cells exposed to chronic THS for 24h compared with untreated cells, suggesting that THS exposure is related to increased oxidative stress and could be an important contributing factor in THS-mediated toxicity. The findings of this study demonstrate for the first time that exposure to THS is genotoxic in human cell lines.


Journal of Hazardous Materials | 2013

Association of exposure to phenols and idiopathic male infertility.

Minjian Chen; Rong Tang; Guangbo Fu; Bin Xu; Pengfei Zhu; Shanlei Qiao; Xiaojiao Chen; Bo Xu; Yufeng Qin; Chuncheng Lu; Bo Hang; Yankai Xia; Xinru Wang

Widespread human exposure to phenols has been documented recently, and some phenols which are potential endocrine disruptors have demonstrated adverse effects on male reproduction in animal and in vitro studies. However, implications about exposure to phenols and male infertility are scarce in humans. Case-control study of 877 idiopathic infertile men and 713 fertile controls was conducted. Urinary levels of bisphenol A, benzophenone-3, pentachlorophenol, triclosan, 4-tert-octylphenol (4-t-OP), 4-n-octylphenol (4-n-OP) and 4-n-nonylphenol (4-n-NP) and semen parameters were measured. After multivariate adjustment, we found 4-t-OP, 4-n-OP and 4-n-NP exposure was associated with idiopathic male infertility (p-value for trend: <0.0001, 0.014 and 0.001, respectively). Aside from these associations, 4-t-OP and 4-n-NP exposure was also associated with idiopathic male infertility with abnormal semen parameters. Moreover, we observed significant associations between sum alkylphenols (APs) exposure and idiopathic male infertility. There were no relationships between exposure to other phenols and idiopathic male infertility in the present study. Our study provides the first evidence that exposure to APs (4-t-OP, 4-n-OP and 4-n-NP) is associated with idiopathic male infertility.


Human Reproduction | 2013

Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p

Yufeng Qin; Zheng Li; Jing Dong; Juncheng Dai; Chuncheng Lu; Xuejiang Guo; Yang Zhao; Yong Zhu; Wei Zhang; Bo Hang; Jiahao Sha; Hongbing Shen; Yankai Xia; Zhibin Hu; Xinru Wang

STUDY QUESTION What is the profile of miRNAs in seminal plasma of patients with non-obstructive azoospermia (NOA)? SUMMARY ANSWER miR-141, miR-429 and miR-7-1-3p are significantly increased in seminal plasma of patients with NOA compared with fertile controls. WHAT IS KNOWN ALREADY There is currently an urgent need to develop a noninvasive diagnostic test for NOA. Altered microRNA (miRNA) profiles have been proposed as potential biomarkers for the diagnosis of disease states. STUDY DESIGN, SIZE, DURATION A total of 200 subjects (n = 100 for NOA, n = 100 for fertile control) were recruited to participate in this study. Recruitment took place from May 2008 to June 2010. PARTICIPANTS/MATERIALS, SETTING, METHODS We employed a strategy consisting of initial screening by TaqMan Low Density Array then further validation with a TaqMan quantitative RT-PCR assay. Validation of the profiling results was conducted in two independent phases. In addition, the expression of the three validated seminal plasma miRNAs (sp-miRNAs) was examined in testicular tissues of patients with NOA and of fertile controls. Methylation status and functional analyses were also performed for the identified sp-miRNAs. MAIN RESULTS AND THE ROLE OF CHANCE miR-141, miR-429 and miR-7-1-3p were significantly increased in seminal plasma of patients with NOA compared with fertile controls. As sensitive and specific biomarkers, the profiling of these three identified sp-miRNAs provides a novel noninvasive, semen-based test for NOA diagnosis. The methylation status of these sp-miRNAs was inversely associated with their expression patterns. Additionally, we found that Cbl and Tgfβ2 were down-regulated by miR-141, while Rb1 and Pik3r3 were down-regulated by miR-7-1-3p. LIMITATIONS, REASONS FOR CAUTION miRNA expression profile was investigated in seminal plasma samples from only a small number of NOA patients. In future investigations, a larger sample size should be adopted and the functional role of the three sp-miRNAs should be further characterized in animal models. WIDER IMPLICATIONS OF THE FINDINGS Given that sp-miRNAs show reproducible and stable expression levels, they are potentially novel noninvasive biomarkers for the diagnosis of NOA. We propose that the three sp-miRNAs described above may participate in a methylation-miRNA-gene network related to NOA development. This work provides a foundation for interpretation of miRNA changes associated with pathogenesis of NOA and extends the current understanding of human NOA pathogenesis.


Environment International | 2013

Urinary phytoestrogen levels related to idiopathic male infertility in Chinese men

Yankai Xia; Minjian Chen; Pengfei Zhu; Chuncheng Lu; Guangbo Fu; Xiaojin Zhou; Daozhen Chen; Honghua Wang; Bo Hang; Shoulin Wang; Zuomin Zhou; Jiahao Sha; Xinru Wang

Phytoestrogens (PEs) are naturally occurring chemical constituents of certain plants. The internal PE exposures, mainly from diet, vary among different populations and in different regions due to various eating habits. To investigate the potential relationship between urinary PE levels and idiopathic male infertility and semen quality in Chinese adult males, 608 idiopathic infertile men and 469 fertile controls were recruited by eligibility screening procedures. Individual exposure to PEs was measured using UPLC-MS/MS as spot urinary concentrations of 6 PEs (daidzein, DAI; equol, EQU; genistein, GEN; naringenin, NAR; coumestrol, COU; and secoisolariciresinol, SEC), which were adjusted with urinary creatinine (CR). Semen quality was assessed by sperm concentration, number per ejaculum and motility. We found that exposures to DAI, GEN and SEC were significantly associated with idiopathic male infertility (P-value for trend=0.036; 0.002; and 0.0001, respectively), while these exposures had stronger association with infertile subjects with at least one abnormal semen parameter than those with all normal semen parameters. Exposures to DAI, GEN and SEC were also related to idiopathic male infertility with abnormal sperm concentration, number per ejaculum and motility (P-value for trend<0.05), while these exposures had stronger association with the infertile men with abnormal sperm number per ejaculum. These findings provide the evidence that PE exposures are related to male reproductive function and raise a public health concern because that exposure to PEs is ubiquitous in China.


Toxicology Letters | 2006

Metal inhibition of human N-methylpurine-DNA glycosylase activity in base excision repair.

Ping Wang; Anton B. Guliaev; Bo Hang

Cadmium (Cd2+), nickel (Ni2+) and cobalt (Co2+) are human and/or animal carcinogens. Zinc (Zn2+) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd2+, Ni2+, and Zn2+ can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (varepsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1,000 microM, both Cd2+ and Zn2+ showed metal-dependent inhibition of the MPG catalytic activity. Ni2+ also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co2+ and Mg2+ did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the varepsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd2+, Zn2+, and Ni2+ at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn2+ showed that the MPG active site has a potential binding site for Zn2+, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.


Chemical Research in Toxicology | 2017

Thirdhand Smoke: New Evidence, Challenges, and Future Directions

Peyton Jacob; Neal L. Benowitz; Hugo Destaillats; Lara A. Gundel; Bo Hang; Manuela Martins-Green; Georg E. Matt; Penelope J. E. Quintana; Jonathan M. Samet; Suzaynn F. Schick; Prue Talbot; Noel J. Aquilina; Melbourne F. Hovell; Jian-Hua Mao; Todd P. Whitehead

Thirdhand smoke (THS) is the contamination that persists after secondhand tobacco smoke has been emitted into air. It refers to the tobacco-related gases and particles that become embedded in materials, such as the carpet, walls, furniture, blankets, and toys. THS is not strictly smoke, but chemicals that adhere to surfaces from which they can be released back into the air, undergo chemical transformations and/or accumulate. Currently, the hazards of THS are not as well documented as the hazards of secondhand smoke (SHS). In this Perspective, we describe the distribution and chemical changes that occur as SHS is transformed into THS, studies of environmental contamination by THS, human exposure studies, toxicology studies using animal models and in vitro systems, possible approaches for avoiding exposure, remediation of THS contamination, and priorities for further research.


Chemosphere | 2013

Parental phenols exposure and spontaneous abortion in Chinese population residing in the middle and lower reaches of the Yangtze River

Xiaojiao Chen; Minjian Chen; Bo Xu; Rong Tang; Xiumei Han; Yufeng Qin; Bin Xu; Bo Hang; Zhilei Mao; Weiwei Huo; Yankai Xia; Zhengfeng Xu; Xinru Wang

Widespread use of phenols has led to ubiquitous exposure to phenols. In experimental animals, phenols increased resorptions, reduced live litter size and fetal body weights. However, there are limited epidemiological evidences of the relationships between exposure to phenols and pregnancy outcomes. We evaluated the associations between parental urinary levels of various phenols and spontaneous abortion in a Chinese population residing in the middle and lower reaches of the Yangtze River. A case-control study was conducted that included 70 case couples with medically unexplained spontaneous abortion and 180 control couples who did not have a history of spontaneous abortion and had at least one living child. Both parental urinary phenols were measured by ultra-high performance liquid chromatography-tandem mass spectrometry including bisphenol A (BPA), benzophenone-3 (BP-3), 2,3,4-trichlorophenol (2,3,4-TCP), pentachlorophenol (PCP), 4-n-octylphenol (4-n-OP) and 4-n-nonylphenol (4-n-NP). Compared with the low exposure group, there was an increased risk of spontaneous abortion with high paternal urinary PCP concentration [odds ratio (OR)=2.09, 95% Confidence Interval (CI), 1.05-4.14], and maternal exposure to 4-n-OP and alkylphenol(s) also significantly increased the risk of spontaneous abortion (OR=2.21, 95% CI, 1.02-4.80; OR=2.81, 95% CI, 1.39-5.65, respectively). Our study firstly provides the evidence that paternal PCP exposure, maternal 4-n-OP and alkylphenol(s) exposure are associated with spontaneous abortion in humans.


Scientific Reports | 2015

Metabolomics reveals metabolic changes in male reproductive cells exposed to thirdhand smoke

Bo Xu; Minjian Chen; Mengmeng Yao; Xiaoli Ji; Zhilei Mao; Wei-Jun Tang; Shanlei Qiao; Suzaynn F. Schick; Jian-Hua Mao; Bo Hang; Yankai Xia

Thirdhand smoke (THS) is a new term for the toxins in cigarette smoke that linger in the environment long after the cigarettes are extinguished. The effects of THS exposure on male reproduction have not yet been studied. In this study, metabolic changes in male germ cell lines (GC-2 and TM-4) were analyzed after THS treatment for 24 h. THS-loaded chromatography paper samples were generated in a laboratory chamber system and extracted in DMEM. At a paper: DMEM ratio of 50 μg/ml, cell viability in both cell lines was normal, as measured by the MTT assay and markers of cytotoxicity, cell cycle, apoptosis and ROS production were normal as measured by quantitative immunofluorescence. Metabolomic analysis was performed on methanol extracts of GC-2 and TM-4 cells. Glutathione metabolism in GC-2 cells, and nucleic acid and ammonia metabolism in TM-4 cells, was changed significantly by THS treatment. RT-PCR analyses of mRNA for enzyme genes Gss and Ggt in GC-2 cells, and TK, SMS and Glna in TM-4 cells reinforced these findings, showing changes in the levels of enzymes involved in the relevant pathways. In conclusion, exposure to THS at very low concentrations caused distinct metabolic changes in two different types of male reproductive cell lines.


PLOS ONE | 2014

NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

Altaf H. Sarker; Arpita Chatterjee; Monique Williams; Sabrina Lin; Christopher Havel; Peyton Jacob; Istvan Boldogh; Tapas K. Hazra; P. Talbot; Bo Hang

Secondhand smoke (SHS) is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS), the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS) in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon–quantitative PCR (LA-QPCR) assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF) and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

Collaboration


Dive into the Bo Hang's collaboration.

Top Co-Authors

Avatar

Yankai Xia

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Anton B. Guliaev

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Minjian Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Jian-Hua Mao

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ahmed Chenna

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. Singer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinru Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Bo Xu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Altaf H. Sarker

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge