Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo Hjorth Bentzen is active.

Publication


Featured researches published by Bo Hjorth Bentzen.


Molecular Pharmacology | 2007

The Small Molecule NS11021 Is a Potent and Specific Activator of Ca2+-Activated Big-Conductance K+ Channels

Bo Hjorth Bentzen; Antonio Nardi; Kirstine Calloe; Lars Siim Madsen; Søren Peter Olesen; Morten Grunnet

Large-conductance Ca2+- and voltage-activated K+ channels (Kca1.1/BK/MaxiK) are widely expressed ion channels. They provide a Ca2+-dependent feedback mechanism for the regulation of various body functions such as blood flow, neurotransmitter release, uresis, and immunity. In addition, a mitochondrial K+ channel with KCa1.1-resembling properties has been found in the heart, where it may be involved in regulation of energy consumption. In the present study, the effect of a novel NeuroSearch compound, 1-(3,5-bis-trifluoromethyl-phenyl)-3-[4-bromo-2-(1H-tetrazol-5-yl)-phenyl]-thiourea (NS11021), was investigated on cloned KCa1.1 expressed in Xenopus laevis oocytes and mammalian cells using electrophysiological methods. NS11021 at concentrations above 0.3 μM activated KCa1.1 in a concentration-dependent manner by parallel-shifting the channel activation curves to more negative potentials. Single-channel analysis revealed that NS11021 increased the open probability of the channel by altering gating kinetics without affecting the single-channel conductance. NS11021 (10 μM) influenced neither a number of cloned Kv channels nor endogenous Na+ and Ca2+ channels (L- and T-type) in guinea pig cardiac myocytes. In conclusion, NS11021 is a novel KCa1.1 channel activator with better specificity and a 10 times higher potency compared with the most broadly applied KCa1.1 opener, NS1619. Thus, NS11021 might be a valuable tool compound when addressing the physiological and pathophysiological roles of KCa1.1 channels.


Cardiovascular Research | 2014

Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria

Lasse Skibsbye; Claire Poulet; Jonas Goldin Diness; Bo Hjorth Bentzen; Lei Yuan; Utz Kappert; Klaus Matschke; Erich Wettwer; Ursula Ravens; Morten Grunnet; Torsten Christ; Thomas Jespersen

AIMS Small-conductance calcium-activated potassium (SK) channels are expressed in the heart of various species, including humans. The aim of the present study was to address whether SK channels play a functional role in human atria. METHODS AND RESULTS Quantitative real-time PCR analyses showed higher transcript levels of SK2 and SK3 than that of the SK1 subtype in human atrial tissue. SK2 and SK3 were reduced in chronic atrial fibrillation (AF) compared with sinus rhythm (SR) patients. Immunohistochemistry using confocal microscopy revealed widespread expression of SK2 in atrial myocytes. Two SK channel inhibitors (NS8593 and ICAGEN) were tested in heterologous expression systems revealing ICAGEN as being highly selective for SK channels, while NS8593 showed less selectivity for these channels. In isolated atrial myocytes from SR patients, both inhibitors decreased inwardly rectifying K(+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential, while only NS8593 induced these effects in tissue from AF patients. SK channel inhibition did not alter any electrophysiological parameter in human interventricular septum tissue. CONCLUSIONS SK channels are present in human atria where they participate in repolarization. SK2 and SK3 were down-regulated and had reduced functional importance in chronic AF. As SK current was not found to contribute substantially to the ventricular AP, pharmacological inhibition of SK channels may be a putative atrial-selective target for future antiarrhythmic drug therapy.


Neuropharmacology | 2006

The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels

Bo Hjorth Bentzen; Nicole Schmitt; Kirstine Calloe; William Dalby Brown; Morten Grunnet; Søren-Peter Olesen

The family of Kv7 (KCNQ) potassium channels consists of five members. Kv7.2 and 3 are the primary molecular correlates of the M-current, but also Kv7.4 and Kv7.5 display M-current characteristics. M-channel modulators include blockers (e.g., linopirdine) for cognition enhancement and openers (e.g., retigabine) for treatment of epilepsy and neuropathic pain. We investigated the effect of a Bristol-Myers Squibb compound (S)-N-[1-(3-morpholin-4-yl-phenyl)-ethyl]-3-phenyl-acrylamide [(S)-1] on cloned human Kv7.1-5 potassium channels expressed in Xenopus laevis oocytes. Using two-electrode voltage-clamp recordings we found that (S)-1 blocks Kv7.1 and Kv7.1/KCNE1 currents. In contrast, (S)-1 produced a hyperpolarizing shift of the activation curve for Kv7.2, Kv7.2/Kv7.3, Kv7.4 and Kv7.5. Further, the compound enhanced the maximal current amplitude at all potentials for Kv7.4 and Kv7.5 whereas the combined activation/block of Kv7.2 and Kv7.2/3 was strongly voltage-dependent. The tryptophan residue 242 in S5, known to be crucial for the effect of retigabine, was also shown to be critical for the enhancing effect of (S)-1 and BMS204352. Furthermore, no additive effect on Kv7.4 current amplitude was observed when both retigabine and (S)-1 or BMS204352 were applied simultaneously. In conclusion, (S)-1 differentially affects the Kv7 channel subtypes and is dependent on a single tryptophan for the current enhancing effect in Kv7.4.


BMC Medical Genetics | 2012

Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation

Morten S. Olesen; Bo Hjorth Bentzen; Jonas B. Nielsen; Annette Buur Steffensen; Jens-Peter David; Javad Jabbari; Henrik K. Jensen; Stig Haunsø; Jesper Hastrup Svendsen; Nicole Schmitt

BackgroundAtrial fibrillation (AF) is the most common arrhythmia. The potassium current IKs is essential for cardiac repolarization. Gain-of-function mutations in KV7.1, the pore-forming α-subunit of the IKs channel, have been associated with AF. We hypothesized that early-onset lone AF is associated with mutations in the IKs channel regulatory subunit KCNE1.MethodsIn 209 unrelated early-onset lone AF patients (< 40 years) the entire coding sequence of KCNE1 was bidirectionally sequenced. We analyzed the identified KCNE1 mutants electrophysiologically in heterologous expression systems.ResultsTwo non-synonymous mutations G25V and G60D were found in KCNE1 that were not present in the control group (n = 432 alleles) and that have not previously been reported in any publicly available databases or in the exom variant server holding exom data from more than 10.000 alleles. Proband 1 (female, age 45, G25V) had onset of paroxysmal AF at the age of 39 years. Proband 2 (G60D) was diagnosed with lone AF at the age of 33 years. The patient has inherited the mutation from his mother, who also has AF. Both probands had no mutations in genes previously associated with AF. In heterologous expression systems, both mutants showed significant gain-of-function for IKs both with respect to steady-state current levels, kinetic parameters, and heart rate-dependent modulation.ConclusionsMutations in KV7.1 leading to gain-of-function of IKs current have previously been described in lone AF, yet this is the first time a mutation in the beta-subunit KCNE1 is associated with the disease. This finding further supports the hypothesis that increased potassium current enhances AF susceptibility.


Frontiers in Physiology | 2014

BK channel activators and their therapeutic perspectives

Bo Hjorth Bentzen; Søren-Peter Olesen; Lars Christian Biilmann Rønn; Morten Grunnet

The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.


Hypertension | 2013

Contribution of KV7 Channels to Basal Coronary Flow and Active Response to Ischemia

Saereh Khanamiri; Ewa Soltysinska; Thomas A. Jepps; Bo Hjorth Bentzen; Preet S. Chadha; Nicole Schmitt; Iain A. Greenwood; Søren-Peter Olesen

The goal of the present study was to determine the role of KCNQ-encoded Kv channels (Kv7 channels) in the passive and active regulation of coronary flow in normotensive and hypertensive rats. In left anterior descending coronary arteries from normotensive rats, structurally different Kv7.2 to 7.5 activators produced relaxations, which were considerably less in arteries from hypertensive rats and were not mimicked by the Kv7.1-specific activator R-L3. In isolated, perfused heart preparations, coronary flow rate increased in response to the Kv7.2 to 7.5 activator (S)-1 and was diminished in the presence of a Kv7 inhibitor. The expression levels of KCNQ1–5 and their known accessory KCNE1–5 subunits in coronary arteries were similar in normotensive and hypertensive rats as measured by quantitative polymerase chain reaction. However, Kv7.4 protein expression was reduced in hypertensive rats. Application of adenosine or A2A receptor agonist CGS-21680 produced concentration-dependent relaxations of coronary arteries from normotensive rats, which were attenuated by application of Kv7 inhibitors. Kv7 blockers also attenuated the ischemia-induced increase in coronary perfusion in Langendorff studies. Overall, these data establish Kv7 channels as crucial regulators of coronary flow at resting and after hypoxic insult.


PLOS ONE | 2014

KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury

Ewa Soltysinska; Bo Hjorth Bentzen; Maria Barthmes; Helle Hattel; A. Brianne Thrush; Mary-Ellen Harper; Klaus Qvortrup; Filip J. Larsen; Tomas A. Schiffer; José Losa-Reyna; Julia Straubinger; Angelina Kniess; Morten B. Thomsen; Andrea Brüggemann; Stefanie Fenske; Martin Biel; Peter Ruth; Christian Wahl-Schott; Robert Boushel; Søren-Peter Olesen; Robert Lukowski

Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK−/− cardiomyocytes. Transmission electron microscopy of BK−/− ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK−/− permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK−/− hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK−/− hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK−/− hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at normoxia and upon re-oxygenation after prolonged anoxia and that IP might indeed favor survival of the myocardium upon I/R injury in a BK-dependent mode stemming from both mitochondrial post-anoxic ROS modulation and non-mitochondrial localizations.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel

Sara I. Liin; Malin Silverå Ejneby; Rene Barro-Soria; Mark A. Skarsfeldt; Johan E. Larsson; Frida Starck Härlin; Teija Parkkari; Bo Hjorth Bentzen; Nicole Schmitt; H. Peter Larsson; Fredrik Elinder

Significance More than 300 mutations in the genes encoding the cardiac IKs channel have been identified in patients with cardiac arrhythmia. These mutations cause either loss of function or gain of function of the IKs channel. This study describes how polyunsaturated fatty acids and their analogues activate or inhibit the IKs channel. These modulators can restore rhythmic firing in arrhythmic firing cardiac myocytes and restore prolonged QT interval in guinea pig hearts. The study also describes a mechanism by which an auxiliary β-subunit alters the pharmacological sensitivity of the IKs channel. Our findings may form the basis for future design of antiarrhythmic compounds that target IKs channels for treating different cardiac arrhythmias caused by mutations in the IKs channel. Polyunsaturated fatty acids (PUFAs) affect cardiac excitability. Kv7.1 and the β-subunit KCNE1 form the cardiac IKs channel that is central for cardiac repolarization. In this study, we explore the prospects of PUFAs as IKs channel modulators. We report that PUFAs open Kv7.1 via an electrostatic mechanism. Both the polyunsaturated acyl tail and the negatively charged carboxyl head group are required for PUFAs to open Kv7.1. We further show that KCNE1 coexpression abolishes the PUFA effect on Kv7.1 by promoting PUFA protonation. PUFA analogs with a decreased pKa value, to preserve their negative charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act antiarrhythmically in embryonic rat cardiomyocytes and in isolated perfused hearts from guinea pig.


Reviews of Physiology Biochemistry and Pharmacology | 2011

Cardiac Ion Channels and Mechanisms for Protection Against Atrial Fibrillation

Morten Grunnet; Bo Hjorth Bentzen; Ulrik Svane Sørensen; Jonas Goldin Diness

Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different ion channel composition in the atria and ventricles. The present text will review the aetiology of arrhythmias with focus on AF and include a description of cardiac ion channels. Channels that constitute potentially atria-selective targets will be described in details. Specific focus is addressed to the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included.


British Journal of Pharmacology | 2014

Vasorelaxant effects of novel Kv7.4 channel enhancers ML213 and NS15370

Thomas A. Jepps; Bo Hjorth Bentzen; Jennifer B. Stott; Oleksandr V. Povstyan; K Sivaloganathan; W Dalby-Brown; Iain A. Greenwood

The KCNQ‐encoded voltage‐gated potassium channel family (Kv7.1‐Kv7.5) are established regulators of smooth muscle contractility, where Kv7.4 and Kv7.5 predominate. Various Kv7.2–7.5 channel enhancers have been developed that have been shown to cause a vasorelaxation in both rodent and human blood vessels. Recently, two novel Kv7 channel enhancers have been identified, ML213 and NS15370, that show increased potency, particularly on Kv7.4 channels. The aim of this study was to characterize the effects of these novel enhancers in different rat blood vessels and compare them with Kv7 enhancers (S‐1, BMS204352, retigabine) described previously. We also sought to determine the binding sites of the new Kv7 enhancers.

Collaboration


Dive into the Bo Hjorth Bentzen's collaboration.

Top Co-Authors

Avatar

Nicole Schmitt

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesper Hastrup Svendsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stig Haunsø

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge