Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Søren Peter Olesen is active.

Publication


Featured researches published by Søren Peter Olesen.


Nature Genetics | 2008

Single-copy insertion of transgenes in Caenorhabditis elegans.

Christian Frøkjær-Jensen; M. Wayne Davis; Christopher E. Hopkins; Blake Newman; Jason M. Thummel; Søren Peter Olesen; Morten Grunnet; Erik M. Jorgensen

At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.


Journal of Cell Science | 2007

Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment

Hanne Borger Rasmussen; Christian Frøkjær-Jensen; Camilla S. Jensen; Henrik Jensen; Nanna K. Jorgensen; Hiroaki Misonou; James S. Trimmer; Søren Peter Olesen; Nicole Schmitt

The potassium channel subunits KCNQ2 and KCNQ3 are believed to underlie the M current of hippocampal neurons. The M-type potassium current plays a key role in the regulation of neuronal excitability; however, the subcellular location of the ion channels underlying this regulation has been controversial. We report here that KCNQ2 and KCNQ3 subunits are localized to the axon initial segment of pyramidal neurons of adult rat hippocampus and in cultured hippocampal neurons. We demonstrate that the localization of the KCNQ2/3 channel complex to the axon initial segment is favored by co-expression of the two channel subunits. Deletion of the ankyrin-G-binding motif in both the KCNQ2 and KCNQ3 C-terminals leads to the disappearance of the complex from the axon initial segment, albeit the channel complex remains functional and still reaches the plasma membrane. We further show that although heteromeric assembly of the channel complex favours localization to the axon initial segment, deletion of the ankyrin-G-binding motif in KCNQ2 alone does not alter the subcellular localization of KCNQ2/3 heteromers. By contrast, deletion of the ankyrin-G-binding motif in KCNQ3 significantly reduces AIS enrichment of the complex, implicating KCNQ3 as a major determinant of M channel localization to the AIS.


Cardiovascular Research | 2008

A transient outward potassium current activator recapitulates the electrocardiographic manifestations of Brugada syndrome

Kirstine Calloe; Jonathan M. Cordeiro; José M. Di Diego; Rie Schultz Hansen; Morten Grunnet; Søren Peter Olesen; Charles Antzelevitch

AIMS Transient outward potassium current (I(to)) is thought to be central to the pathogenesis of the Brugada syndrome (BrS). However, an I((to)) activator has not been available with which to validate this hypothesis. Here, we provide a direct test of the hypothesis using a novel I(to) activator, NS5806. METHODS AND RESULTS Isolated canine ventricular myocytes and coronary-perfused wedge preparations were used. Whole-cell patch-clamp studies showed that NS5806 (10 microM) increased peak I(to) at +40 mV by 79 +/- 4% (24.5 +/- 2.2 to 43.6 +/- 3.4 pA/pF, n = 7) and slowed the time constant of inactivation from 12.6 +/- 3.2 to 20.3 +/- 2.9 ms (n = 7). The total charge carried by I(to) increased by 186% (from 363.9 +/- 40.0 to 1042.0 +/- 103.5 pA x ms/pF, n = 7). In ventricular wedge preparations, NS5806 increased phase 1 and notch amplitude of the action potential in the epicardium, but not in the endocardium, and accentuated the ECG J-wave, leading to the development of phase 2 re-entry and polymorphic ventricular tachycardia (n = 9). Although sodium and calcium channel blockers are capable of inducing BrS only in right ventricular (RV) wedge preparations, the I(to) activator was able to induce the phenotype in wedges from both ventricles. NS5806 induced BrS in 4/6 right and 2/10 left ventricular wedge preparations. CONCLUSION The I(to) activator NS5806 recapitulates the electrographic and arrhythmic manifestation of BrS, providing evidence in support of its pivotal role in the genesis of the disease. Our findings also suggest that a genetic defect leading to a gain of function of I(to) could explain variants of BrS, in which ST-segment elevation or J-waves are evident in both right and left ECG leads.


Circulation | 2011

Downregulation of Kv7.4 Channel Activity in Primary and Secondary Hypertension

Thomas A. Jepps; Preet S. Chadha; Alison J. Davis; Maksym I. Harhun; Gillian W. Cockerill; Søren Peter Olesen; Rie Schultz Hansen; Iain A. Greenwood

BACKGROUND Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of 3 structurally different activators of Kv7.2 through Kv7.5 channels (BMS-204352, S-1, and retigabine) on blood vessels from normotensive and hypertensive animals. METHODS AND RESULTS Precontracted thoracic aorta and mesenteric artery segments from normotensive rats were relaxed by all 3 Kv7 activators, with potencies of BMS-204352=S-1>retigabine. We also tested these agents in the coronary circulation using the Langendorff heart preparation. BMS-204352 and S-1 dose dependently increased coronary perfusion at concentrations between 0.1 and 10 μmol/L, whereas retigabine was effective at 1 to 10 μmol/L. In addition, S-1 increased K(+) currents in isolated mesenteric artery myocytes. The ability of these agents to relax precontracted vessels, increase coronary flow, or augment K(+) currents was impaired considerably in tissues isolated from spontaneously hypertensive rats (SHRs). Of the 5 KCNQ genes, only the expression of KCNQ4 was reduced (≈3.7 fold) in SHRs aorta. Kv7.4 protein levels were ≈50% lower in aortas and mesenteric arteries from spontaneously hypertensive rats compared with normotensive vessels. A similar attenuated response to S-1 and decreased Kv7.4 were observed in mesenteric arteries from mice made hypertensive by angiotensin II infusion compared with normotensive controls. CONCLUSIONS In 2 different rat and mouse models of hypertension, the functional impact of Kv7 channels was dramatically downregulated.


Molecular Pharmacology | 2007

The Small Molecule NS11021 Is a Potent and Specific Activator of Ca2+-Activated Big-Conductance K+ Channels

Bo Hjorth Bentzen; Antonio Nardi; Kirstine Calloe; Lars Siim Madsen; Søren Peter Olesen; Morten Grunnet

Large-conductance Ca2+- and voltage-activated K+ channels (Kca1.1/BK/MaxiK) are widely expressed ion channels. They provide a Ca2+-dependent feedback mechanism for the regulation of various body functions such as blood flow, neurotransmitter release, uresis, and immunity. In addition, a mitochondrial K+ channel with KCa1.1-resembling properties has been found in the heart, where it may be involved in regulation of energy consumption. In the present study, the effect of a novel NeuroSearch compound, 1-(3,5-bis-trifluoromethyl-phenyl)-3-[4-bromo-2-(1H-tetrazol-5-yl)-phenyl]-thiourea (NS11021), was investigated on cloned KCa1.1 expressed in Xenopus laevis oocytes and mammalian cells using electrophysiological methods. NS11021 at concentrations above 0.3 μM activated KCa1.1 in a concentration-dependent manner by parallel-shifting the channel activation curves to more negative potentials. Single-channel analysis revealed that NS11021 increased the open probability of the channel by altering gating kinetics without affecting the single-channel conductance. NS11021 (10 μM) influenced neither a number of cloned Kv channels nor endogenous Na+ and Ca2+ channels (L- and T-type) in guinea pig cardiac myocytes. In conclusion, NS11021 is a novel KCa1.1 channel activator with better specificity and a 10 times higher potency compared with the most broadly applied KCa1.1 opener, NS1619. Thus, NS11021 might be a valuable tool compound when addressing the physiological and pathophysiological roles of KCa1.1 channels.


Hypertension | 2012

Reduced KCNQ4-Encoded Voltage-Dependent Potassium Channel Activity Underlies Impaired β-Adrenoceptor–Mediated Relaxation of Renal Arteries in Hypertension

Preet S. Chadha; Friederike Zunke; Hai-Lei Zhu; Alison J. Davis; Thomas A. Jepps; Søren Peter Olesen; William C. Cole; James D. Moffatt; Iain A. Greenwood

KCNQ4-encoded voltage-dependent potassium (Kv7.4) channels are important regulators of vascular tone that are severely compromised in models of hypertension. However, there is no information as to the role of these channels in responses to endogenous vasodilators. We used a molecular knockdown strategy, as well as pharmacological tools, to examine the hypothesis that Kv7.4 channels contribute to &bgr;-adrenoceptor–mediated vasodilation in the renal vasculature and underlie the vascular deficit in spontaneously hypertensive rats. Quantitative PCR and immunohistochemistry confirmed gene and protein expression of KCNQ1, KCNQ3, KCNQ4, KCNQ5, and Kv7.1, Kv7.4, and Kv7.5 in rat renal artery. Isoproterenol produced concentration-dependent relaxation of precontracted renal arteries and increased Kv7 channel currents in isolated smooth muscle cells. Application of the Kv7 blocker linopirdine attenuated isoproterenol-induced relaxation and current. Isoproterenol-induced relaxations were also reduced in arteries incubated with small interference RNAs targeted to KCNQ4 that produced a ≈60% decrease in Kv7.4 protein level. Relaxation to isoproterenol and the Kv7 activator S-1 were abolished in arteries from spontaneously hypertensive rats, which was associated with ≈60% decrease in Kv7.4 abundance. This study provides the first evidence that Kv7 channels contribute to &bgr;-adrenoceptor–mediated vasodilation in the renal vasculature and that abrogation of Kv7.4 channels is strongly implicated in the impaired &bgr;-adrenoceptor pathway in spontaneously hypertensive rats. These findings may provide a novel pathogenic link between arterial dysfunction and hypertension.


European Journal of Pharmacology | 2002

Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352.

Delphine S. Dupuis; Rikke Louise Schrøder; Thomas Jespersen; Jeppe K. Christensen; Palle Christophersen; Bo Skaaning Jensen; Søren Peter Olesen

The novel anti-ischemic compound, BMS-204352 ((3S)-(+)-(5-chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)-2H-indol-2-one)), strongly activates the voltage-gated K+ channel KCNQ5 in a concentration-dependent manner with an EC50 of 2.4 microM. At 10 microM, BMS-204352 increased the steady state current at -30 mV by 12-fold, in contrast to the 2-fold increase observed for the other KCNQ channels [Schrøder et al., 2001]. Retigabine ((D-23129; N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester) induced a smaller, yet qualitatively similar effect on KCNQ5. Furthermore, BMS-204352 (10 microM) did not significantly shift the KCNQ5 activation curves (threshold and potential for half-activation, V1/2), as observed for the other KCNQ channels. In the presence of BMS-204352, the activation and deactivation kinetics of the KCNQ5 currents were slowed as the slow activation time constant increased up to 10-fold. The M-current blockers, linopirdine (DuP 996; 3,3-bis(4-pyridinylmethyl)-1-phenylindolin-2-one) and XE991 (10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone), inhibited the activation of the KCNQ5 channel induced by the BMS-204352. Thus, BMS-204352 appears to be an efficacious KCNQ channels activator, and the pharmacological properties of the compound on the KCNQ5 channel seems to be different from what has been obtained on the other KCNQ channels.


Experimental Physiology | 2011

Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation.

Ewa Soltysinska; Søren Peter Olesen; Oleg E. Osadchii

Widely used murine models of adrenergic‐induced cardiomyopathy offer little insight into electrical derangements seen in human heart failure owing to profound differences in the characteristics of ventricular repolarization in mice and rats compared with humans. We therefore sought to determine whether sustained adrenergic activation may produce a clinically relevant heart failure phenotype in the guinea‐pig, an animal species whose ventricular action potential shape and restitution properties resemble those determined in humans. Isoprenaline (ISO), a β‐adrenoceptor agonist, was infused at variable dosage and duration using either subcutaneously implanted osmotic minipumps or daily injections, in an attempt to establish the relevant treatment protocol. We found that 3 months of daily ISO injections (final dose of 1 mg kg−1, i.p.) promote heart failure evidenced by cardiac hypertrophy [increased cardiac weights, left ventricular (LV) posterior wall thickness, myocyte cross‐sectional area and LV protein content], cardiac dilatation (increased LV internal diameters), basal systolic dysfunction (reduced LV fractional shortening determined by echocardiography and flattened LV systolic pressure–volume and stress–strain relationships assessed in isolated, perfused heart preparations), reduced contractile reserve in the presence of acute β‐adrenoceptor stimulation, and pulmonary oedema (increased lung weights). These changes were associated with prolongation of LV epicardial action potential, effective refractory period and QT interval, an upward shift of the electrical restitution curve determined over a wide range of diastolic intervals, and reduced maximal restitution slope. The physiological right ventricular‐to‐LV difference in action potential duration was eliminated in ISO‐treated hearts, thereby contributing to impaired activation‐to‐repolarization coupling and reversed right ventricular‐to‐LV difference in repolarization time. In summary, we establish the guinea‐pig model of ISO‐induced cardiomyopathy, which enables the correlation of detrimental structural and contractile changes with repolarization abnormalities typically seen in human heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Predictive value of electrical restitution in hypokalemia-induced ventricular arrhythmogenicity.

Oleg E. Osadchii; Anders Peter Larsen; Søren Peter Olesen

The ventricular action potential (AP) shortens exponentially upon a progressive reduction of the preceding diastolic interval. Steep electrical restitution slopes have been shown to promote wavebreaks, thus contributing to electrical instability. The present study was designed to assess the predictive value of electrical restitution in hypokalemia-induced arrhythmogenicity. We recorded monophasic APs and measured effective refractory periods (ERP) at distinct ventricular epicardial and endocardial sites and monitored volume-conducted ECG at baseline and after hypokalemic perfusion (2.5 mM K(+) for 30 min) in isolated guinea pig heart preparations. The restitution of AP duration measured at 90% repolarization (APD(90)) was assessed after premature extrastimulus application at variable coupling stimulation intervals, and ERP restitution was assessed by measuring refractoriness over a wide range of pacing rates. Hypokalemia increased the amplitude of stimulation-evoked repolarization alternans and the inducibility of tachyarrhythmias and reduced ventricular fibrillation threshold. Nevertheless, these changes were associated with flattened rather than steepened APD(90) restitution slopes and slowed restitution kinetics. In contrast, ERP restitution slopes were significantly increased in hypokalemic hearts. Although epicardial APD(90) measured during steady-state pacing (S(1)-S(1) = 250 ms) was prolonged in hypokalemic hearts, the left ventricular ERP was shortened. Consistently, the epicardial ERP measured at the shortest diastolic interval achieved upon a progressive increase in pacing rate was reduced in the hypokalemic left ventricle. In conclusion, this study highlights the superiority of ERP restitution at predicting increased arrhythmogenicity in the hypokalemic myocardium. The lack of predictive value of APD(90) restitution is presumably related to different mode of changes in ventricular repolarization and refractoriness in a hypokalemic setting, whereby APD(90) prolongation may be associated with shortened ERP.


Cardiovascular Research | 2014

G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization

Bo Liang; Jakob D. Nissen; Morten Laursen; Xiaodong Wang; Lasse Skibsbye; Matthew C. Hearing; Martin N. Andersen; Hanne Borger Rasmussen; Kevin Wickman; Morten Grunnet; Søren Peter Olesen; Thomas Jespersen

AIMS The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle. METHODS AND RESULTS Immunofluorescence experiments demonstrated that GIRK4 was localized in outer sarcolemmas and t-tubules in GIRK1 knockout (KO) mice, whereas GIRK4 labelling was not detected in GIRK4 KO mice. GIRK4 was localized in intercalated discs in rat ventricle, whereas it was expressed in intercalated discs and outer sarcolemmas in rat atrium. GIRK4 was localized in t-tubules and intercalated discs in human ventricular endocardium and epicardium, but absent in mid-myocardium. Electrophysiological recordings in rat ventricular tissue ex vivo showed that the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and acetylcholine (ACh) shortened action potential duration (APD), and that the APD shortening was reversed by either the GIRK channel blocker tertiapin-Q, the adenosine A1 receptor antagonist DPCPX or by the muscarinic M2 receptor antagonist AF-DX 116. Tertiapin-Q prolonged APD in the absence of the exogenous receptor activation. Furthermore, CPA and ACh decreased the effective refractory period and the effect was reversed by either tertiapin-Q, DPCPX or AF-DX 116. Receptor activation also hyperpolarized the resting membrane potential, an effect that was reversed by tertiapin-Q. In contrast, tertiapin-Q depolarized the resting membrane potential in the absence of the exogenous receptor activation. CONCLUSION Confocal microscopy shows that among species GIRK4 is differentially localized in the cardiac ventricle, and that it is heterogeneously expressed across human ventricular wall. Electrophysiological recordings reveal that GIRK current may contribute significantly to ventricular repolarization and thereby to cardiac electrical stability.

Collaboration


Dive into the Søren Peter Olesen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Nardi

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge