Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo Pilgaard is active.

Publication


Featured researches published by Bo Pilgaard.


PLOS ONE | 2014

Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

Peter Kamp Busk; Mette Lange; Bo Pilgaard; Lene Lange

The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.


IMA Fungus : The Global Mycological Journal | 2012

The importance of fungi and of mycology for a global development of the bioeconomy

Lene Lange; Lasse Bech; Peter Kamp Busk; Morten Nedergaard Grell; Yuhong Huang; Mette Lange; Tore Linde; Bo Pilgaard; Doris Roth; Xiaoxue Tong

The vision of the European common research programme for 2014–2020, called Horizon 2020, is to create a smarter, more sustainable and more inclusive society. However, this is a global endeavor, which is important for mycologists all over the world because it includes a special role for fungi and fungal products. After ten years of research on industrial scale conversion of biowaste, the conclusion is that the most efficient and gentle way of converting recalcitrant lignocellulosic materials into high value products for industrial purposes, is through the use of fungal enzymes. Moreover, fungi and fungal products are also instrumental in producing fermented foods, to give storage stability and improved health. Climate change will lead to increasingly severe stress on agricultural production and productivity, and here the solution may very well be that fungi will be brought into use as a new generation of agricultural inoculants to provide more robust, more nutrient efficient, and more drought tolerant crop plants. However, much more knowledge is required in order to be able to fully exploit the potentials of fungi, to deliver what is needed and to address the major global challenges through new biological processes, products, and solutions. This knowledge can be obtained by studying the fungal proteome and metabolome; the biology of fungal RNA and epigenetics; protein expression, homologous as well as heterologous; fungal host/substrate relations; physiology, especially of extremophiles; and, not the least, the extent of global fungal biodiversity. We also need much more knowledge and understanding of how fungi degrade biomass in nature. The projects in our group in Aalborg University are examples of the basic and applied research going on to increase the understanding of the biology of the fungal secretome and to discover new enzymes and new molecular/bioinformatics tools. However, we need to put Mycology higher up on global agendas, e.g. by positioning Mycology as a candidate for an OECD Excellency Program. This could pave the way for increased funding of international collaboration, increased global visibility, and higher priority among decision makers all over the world.


PLOS ONE | 2017

Aspergillus hancockii sp. Nov., a biosynthetically talented fungus endemic to southeastern Australian soils

John I. Pitt; Lene Lange; Alastair E. Lacey; Daniel Vuong; David J. Midgley; Paul Greenfield; Mark Bradbury; Ernest Lacey; Peter Kamp Busk; Bo Pilgaard; Yit-Heng Chooi; Andrew M. Piggott

Aspergillus hancockii sp. nov., classified in Aspergillus subgenus Circumdati section Flavi, was originally isolated from soil in peanut fields near Kumbia, in the South Burnett region of southeast Queensland, Australia, and has since been found occasionally from other substrates and locations in southeast Australia. It is phylogenetically and phenotypically related most closely to A. leporis States and M. Chr., but differs in conidial colour, other minor features and particularly in metabolite profile. When cultivated on rice as an optimal substrate, A. hancockii produced an extensive array of 69 secondary metabolites. Eleven of the 15 most abundant secondary metabolites, constituting 90% of the total area under the curve of the HPLC trace of the crude extract, were novel. The genome of A. hancockii, approximately 40 Mbp, was sequenced and mined for genes encoding carbohydrate degrading enzymes identified the presence of more than 370 genes in 114 gene clusters, demonstrating that A. hancockii has the capacity to degrade cellulose, hemicellulose, lignin, pectin, starch, chitin, cutin and fructan as nutrient sources. Like most Aspergillus species, A. hancockii exhibited a diverse secondary metabolite gene profile, encoding 26 polyketide synthase, 16 nonribosomal peptide synthase and 15 nonribosomal peptide synthase-like enzymes.


Frontiers in Microbiology | 2017

A New Functional Classification of Glucuronoyl Esterases by Peptide Pattern Recognition

Jane Wittrup Agger; Peter Kamp Busk; Bo Pilgaard; Anne S. Meyer; Lene Lange

Glucuronoyl esterases are a novel type of enzymes believed to catalyze the hydrolysis of ester linkages between lignin and glucuronoxylan in lignocellulosic biomass, linkages known as lignin carbohydrate complexes. These complexes contribute to the recalcitrance of lignocellulose. Glucuronoyl esterases are a part of the microbial machinery for lignocellulose degradation and coupling their role to the occurrence of lignin carbohydrate complexes in biomass is a desired research goal. Glucuronoyl esterases have been assigned to CAZymes family 15 of carbohydrate esterases, but only few examples of characterized enzymes exist and the exact activity is still uncertain. Here peptide pattern recognition is used as a bioinformatic tool to identify and group new CE15 proteins that are likely to have glucuronoyl esterase activity. 1024 CE15-like sequences were drawn from GenBank and grouped into 24 groups. Phylogenetic analysis of these groups made it possible to pinpoint groups of putative fungal and bacterial glucuronoyl esterases and their sequence variation. Moreover, a number of groups included previously undescribed CE15-like sequences that are distinct from the glucuronoyl esterases and may possibly have different esterase activity. Hence, the CE15 family is likely to comprise other enzyme functions than glucuronoyl esterase alone. Gene annotation in a variety of fungal and bacterial microorganisms showed that coprophilic fungi are rich and diverse sources of CE15 proteins. Combined with the lifestyle and habitat of coprophilic fungi, they are predicted to be excellent candidates for finding new glucuronoyl esterase genes.


BMC Bioinformatics | 2017

Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function

Peter Kamp Busk; Bo Pilgaard; Mateusz Jakub Lezyk; Anne S. Meyer; Lene Lange

BackgroundCarbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy.ResultsWe identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows.ConclusionsHotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.


Biotechnology for Biofuels | 2017

Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge

Casper Wilkens; Peter Kamp Busk; Bo Pilgaard; Wen Jing Zhang; Kåre Lehmann Nielsen; Per Halkjær Nielsen; Lene Lange

BackgroundImproved carbohydrate-active enzymes (CAZymes) are needed to fulfill the goal of producing food, feed, fuel, chemicals, and materials from biomass. Little is known about how the diverse microbial communities in anaerobic digesters (ADs) metabolize carbohydrates or which CAZymes that are present, making the ADs a unique niche to look for CAZymes that can potentiate the enzyme blends currently used in industry.ResultsEnzymatic assays showed that functional CAZymes were secreted into the AD environments in four full-scale mesophilic Danish ADs fed with primary and surplus sludge from municipal wastewater treatment plants. Metagenomes from the ADs were mined for CAZymes with Homology to Peptide Patterns (HotPep). 19,335 CAZymes were identified of which 30% showed 50% or lower identity to known proteins demonstrating that ADs make up a promising pool for discovery of novel CAZymes. A function was assigned to 54% of all CAZymes identified by HotPep. Many different α-glucan-acting CAZymes were identified in the four metagenomes, and the most abundant family was glycoside hydrolase family 13, which contains α-glucan-acting CAZymes. Cellulytic and xylanolytic CAZymes were also abundant in the four metagenomes. The cellulytic enzymes were limited almost to endoglucanases and β-glucosidases, which reflect the large amount of partly degraded cellulose in the sludge. No dockerin domains were identified suggesting that the cellulytic enzymes in the ADs studied operate independently. Of xylanolytic CAZymes, especially xylanases and β-xylosidase, but also a battery of accessory enzymes, were present in the four ADs.ConclusionsOur findings suggest that the ADs are a good place to look for novel plant biomass degrading and modifying enzymes that can potentiate biological processes and provide basis for production of a range of added-value products from biorefineries.


Applied and Environmental Microbiology | 2017

Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites

Rafael R. da Costa; Haofu Hu; Bo Pilgaard; Sabine Vreeburg; Julia Schückel; Kristine S. K. Pedersen; Stjepan Krešimir Kračun; Peter Kamp Busk; Jesper Harholt; Panagiotis Sapountzis; Lene Lange; Duur K. Aanen; Michael Poulsen

ABSTRACT Fungus-growing termites rely on mutualistic fungi of the genus Termitomyces and gut microbes for plant biomass degradation. Due to a certain degree of symbiont complementarity, this tripartite symbiosis has evolved as a complex bioreactor, enabling decomposition of nearly any plant polymer, likely contributing to the success of the termites as one of the main plant decomposers in the Old World. In this study, we evaluated which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We found a diversity of active enzymes at different stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant substrate. However, preliminary fungal RNA sequencing (RNA-seq) analyses suggest that this likely transport is supplemented with enzymes produced in situ. Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mixture of plant material, fungal spores, and enzymes, is likely the key to the extraordinarily efficient plant decomposition in fungus-growing termites. IMPORTANCE Fungus-growing termites have a substantial ecological footprint in the Old World (sub)tropics due to their ability to decompose dead plant material. Through the establishment of an elaborate plant biomass inoculation strategy and through fungal and bacterial enzyme contributions, this farming symbiosis has become an efficient and versatile aerobic bioreactor for plant substrate conversion. Since little is known about what enzymes are expressed and where they are active at different stages of the decomposition process, we used enzyme assays, transcriptomics, and plant content measurements to shed light on how this decomposition of plant substrate is so effectively accomplished.


bioRxiv | 2018

The origin of fungi-culture in termites was associated with a shift to a mycolytic gut bacteria community

Haofu Hu; Rafael R. da Costa; Bo Pilgaard; Morten Schiøtt; Lene Lange; Michael Poulsen

Termites forage on a range of substrates, and it has been suggested that diet shapes the composition and function of termite gut bacterial communities. Through comparative analyses of gut metagenomes in nine termite species with distinct diets, we characterise bacterial community compositions and identify biomass-degrading enzymes and the bacterial taxa that encode them. We find that fungus-growing termite guts are enriched in fungal cell wall-degrading and proteolytic enzymes, while wood-feeding termite gut communities are enriched for plant cell wall-degrading enzymes. Interestingly, wood-feeding termite gut bacteria code for abundant chitinolytic enzymes, suggesting that fungal biomass within the decaying wood likely contributes to gut bacteria or termite host nutrition. Across diets, the dominant biomass-degrading enzymes are predominantly coded for by the most abundant bacterial taxa, suggesting tight links between diet and gut community composition, with the most marked shift being the communities coding for the mycolytic capacity of the fungus-growing termite gut.


28th Fungal Genetics Conference | 2015

The Chytrid Secretome: a comparative analysis of the secretome of an aerobic, anaerobic and pathogenic Chytrid species

Lene Lange; Bo Pilgaard; Frank H. Gleason; Peter Kamp Busk; Anders Gorm Pedersen


Fungal Biology Reviews | 2018

Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi

Lene Lange; Bo Pilgaard; Florian-Alexander Herbst; Peter Kamp Busk; Frank H. Gleason; Anders Gorm Pedersen

Collaboration


Dive into the Bo Pilgaard's collaboration.

Top Co-Authors

Avatar

Lene Lange

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Peter Kamp Busk

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Casper Wilkens

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne S. Meyer

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Haofu Hu

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge