Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lene Lange is active.

Publication


Featured researches published by Lene Lange.


Environmental Microbiology | 2012

The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.

Francois Rineau; Doris Roth; Firoz Shah; Mark M. Smits; Tomas Johansson; Björn Canbäck; Peter Bjarke Olsen; Per Persson; Morten Nedergaard Grell; Erika Lindquist; Igor V. Grigoriev; Lene Lange; Anders Tunlid

Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter–protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.


Applied and Environmental Microbiology | 2005

Beringian Paleoecology Inferred from Permafrost-Preserved Fungal DNA

Magnus C. Lydolph; Jonas Jacobsen; Peter Arctander; M. Thomas P. Gilbert; David A. Gilichinsky; Anders J. Hansen; Lene Lange

ABSTRACT The diversity of fungi in permanently frozen soil from northeastern Siberia was studied by culture-independent PCR amplification of diverse environmental 18S rRNA genes. Elaborate protocols to avoid contamination during drilling, sampling, and amplification were used. A broad diversity of eukaryotic DNA sequences that were 510 bp long, including sequences of various fungi, plants, and invertebrates, could be obtained reproducibly from samples that were up to 300,000 to 400,000 years old. The sequences revealed that ancient fungal communities included a diversity of cold-adapted yeasts, dark-pigmented fungi, plant-parasitic fungi, and lichen mycobionts. DNA traces of tree-associated macrofungi in a modern tundra sample indicated that there was a shift in fungal diversity following the last ice age and supported recent results showing that there was a severe change in the plant composition in northeastern Siberia during this period. Interestingly, DNA sequences with high homology to sequences of coprophilic and keratinophilic fungi indicated that feces, hair, skin, and nails could have been sources of ancient megafauna DNA recently reported to be present in small amounts of Siberian permafrost sediments.


BMC Genomics | 2015

Classification of fungal and bacterial lytic polysaccharide monooxygenases

Peter Kamp Busk; Lene Lange

BackgroundLytic polysaccharide monooxygenases are important enzymes for the decomposition of recalcitrant biological macromolecules such as plant cell wall and chitin polymers. These enzymes were originally designated glycoside hydrolase family 61 and carbohydrate-binding module family 33 but are now classified as auxiliary activities 9, 10 and 11 in the CAZy database. To obtain a systematic analysis of the divergent families of lytic polysaccharide monooxygenases we used Peptide Pattern Recognition to divide 5396 protein sequences resembling enzymes from families AA9 (1828 proteins), AA10 (2799 proteins) and AA11 (769 proteins) into subfamilies.ResultsThe results showed that the lytic polysaccharide monooxygenases have two conserved regions identified by conserved peptides specific for each AA family. The peptides were used for in silico PCR discovery of the lytic polysaccharide monooxygenases in 79 fungal and 95 bacterial genomes. The bacterial genomes encoded 0 – 7 AA10s (average 0.6). No AA9 or AA11 were found in the bacteria. The fungal genomes encoded 0 – 40 AA9s (average 7) and 0 – 15 AA11s (average 2) and two of the fungi possessed a gene encoding a putative AA10. The AA9s were mainly found in plant cell wall-degrading asco- and basidiomycetes in agreement with the described role of AA9 enzymes. In contrast, the AA11 proteins were found in 36 of the 39 ascomycetes and in only two of the 32 basidiomycetes and their abundance did not correlate to the degradation of cellulose and hemicellulose.ConclusionsThese results provides an overview of the sequence characteristics and occurrence of the divergent AA9, AA10 and AA11 families and pave the way for systematic investigations of the of lytic polysaccharide monooxygenases and for structure-function studies of these enzymes.


Applied and Environmental Microbiology | 2013

Function-Based Classification of Carbohydrate-Active Enzymes by Recognition of Short, Conserved Peptide Motifs

Peter Kamp Busk; Lene Lange

ABSTRACT Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.


Transactions of The British Mycological Society | 1977

Root-inhabiting Olpidium species: The O. radicale complex

Lene Lange; Violeta Insunza

A light microscopic study of different stages in the life-cycle of the obligate plant parasitic fungus, Olpidium radicale Schwartz & Cook (Phycomycetes, Chytridiales) is presented. The most significant taxonomic characters are considered to be a resting sporangium with an apparent smooth outer wall and a honeycomb-like pattern on the endospore, and usually large elongated zoospores with a remarkably slow and steady way of swimming; the latter characteristic should be compared to the rapid and jerky swimming movement characteristic for zoospores of most Chytridiales. By the use of these characters, O. radicale is easily distinguished from O. brassicae , which has stellate resting sporangia. However, comparing O. radicale to other root-inhabiting olpidiaceous species described with smooth resting sporangia ( Pleotrachelus bornovanus Saht. and O. cucurbitacearum Barr), no significant differences may be found. On the basis of priority these species names are recognized as synonyms of O. radicale , for which a new description is given.


Applied Microbiology and Biotechnology | 2016

Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance

Lene Lange; Yuhong Huang; Peter Kamp Busk

Discovery of keratin-degrading enzymes from fungi and bacteria has primarily focused on finding one protease with efficient keratinase activity. Recently, an investigation was conducted of all keratinases secreted from a fungus known to grow on keratinaceous materials, such as feather, horn, and hooves. The study demonstrated that a minimum of three keratinases is needed to break down keratin, an endo-acting, an exo-acting, and an oligopeptide-acting keratinase. Further, several studies have documented that disruption of sulfur bridges of the keratin structure acts synergistically with the keratinases to loosen the molecular structure, thus giving the enzymes access to their substrate, the protein structure. With such complexity, it is relevant to compare microbial keratin decomposition with the microbial decomposition of well-studied polymers such as cellulose and chitin. Interestingly, it was recently shown that the specialized enzymes, lytic polysaccharide monoxygenases (LPMOs), shown to be important for breaking the recalcitrance of cellulose and chitin, are also found in keratin-degrading fungi. A holistic view of the complex molecular self-assembling structure of keratin and knowledge about enzymatic and boosting factors needed for keratin breakdown have been used to formulate a hypothesis for mode of action of the LPMOs in keratin decomposition and for a model for degradation of keratin in nature. Testing such hypotheses and models still needs to be done. Even now, the hypothesis can serve as an inspiration for designing industrial processes for keratin decomposition for conversion of unexploited waste streams, chicken feather, and pig bristles into bioaccessible animal feed.


AMB Express | 2013

Cellulolytic potential of thermophilic species from four fungal orders

Peter Kamp Busk; Lene Lange

Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles. Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45°C. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we found that some fungi such as Melanocarpus albomyces readily grew on crystalline cellulose and produced cellulases. These results indicate that there are large differences in the cellulolytic potential of different isolates of the same species. Furthermore, all the selected species were able to degrade cellulose but the differences in cellulolytic potential and thermostability of the secretome did not correlate to the taxonomic position. PCR amplification and sequencing of 22 cellulase genes from the fungi showed that the level of thermostability of the cellulose-degrading activity could not be inferred from the phylogenetic relationship of the cellulases.


Protoplasma | 1976

The zoospore ofOlpidium brassicae

Lene Lange; Lauritz W. Olson

SummaryThe ultrastructure of the zoospore ofOlpidium brassicae is described and compared with observations made of other zoospores of the uniflagellatePhycomycetes. The zoospore ofO. brassicae is characterized by an extensive, cone-shaped rhizoplast and a lack of a nuclear cap, as well as a side-body complex or a rumposome. Vacuoles which contain osmiophilic material are termed gamma-like particles. Three-dimensional reconstructions based on serial sectioning were made of the organelles in the region of the nucleus, showing that the zoospore ofO. brassicae contains one or at most two elaborately branched mitochondria. Microbodies have a high degree of interconnection and are in intimate association with the mitochondrion, lipid drops, and the nuclear envelope.


BMC Genomics | 2013

The fungal symbiont of Acromyrmex leaf-cutting ants expresses the full spectrum of genes to degrade cellulose and other plant cell wall polysaccharides

Morten Nedergaard Grell; Tore Linde; Sanne Nygaard; Kåre Lehmann Nielsen; Jacobus J. Boomsma; Lene Lange

BackgroundThe fungus gardens of leaf-cutting ants are natural biomass conversion systems that turn fresh plant forage into fungal biomass to feed the farming ants. However, the decomposition potential of the symbiont Leucocoprinus gongylophorus for processing polysaccharides has remained controversial. We therefore used quantifiable DeepSAGE technology to obtain mRNA expression patterns of genes coding for secreted enzymes from top, middle, and bottom sections of a laboratory fungus-garden of Acromyrmex echinatior leaf-cutting ants.ResultsA broad spectrum of biomass-conversion-relevant enzyme genes was found to be expressed in situ: cellulases (GH3, GH5, GH6, GH7, AA9 [formerly GH61]), hemicellulases (GH5, GH10, CE1, GH12, GH74), pectinolytic enzymes (CE8, GH28, GH43, PL1, PL3, PL4), glucoamylase (GH15), α-galactosidase (GH27), and various cutinases, esterases, and lipases. In general, expression of these genes reached maximal values in the bottom section of the garden, particularly for an AA9 lytic polysaccharide monooxygenase and for a GH5 (endocellulase), a GH7 (reducing end-acting cellobiohydrolase), and a GH10 (xylanase), all containing a carbohydrate binding module that specifically binds cellulose (CBM1). Although we did not directly quantify enzyme abundance, the profile of expressed cellulase genes indicates that both hydrolytic and oxidative degradation is taking place.ConclusionsThe fungal symbiont of Acromyrmex leaf-cutting ants can degrade a large range of plant polymers, but the conversion of cellulose, hemicellulose, and part of the pectin occurs primarily towards the end of the decomposition process, i.e. in the bottom section of the fungus garden. These conversions are likely to provide nutrients for the fungus itself rather than for the ants, whose colony growth and reproductive success are limited by proteins obtained from ingesting fungal gongylidia. These specialized hyphal tips are hardly produced in the bottom section of fungus gardens, consistent with the ants discarding old fungal biomass from this part of the garden. The transcripts that we found suggest that actively growing mycelium in the bottom of gardens helps to maintain an optimal water balance to avoid hyphal disintegration, so the ants can ultimately discard healthy rather than decaying and diseased garden material, and to buffer negative effects of varying availability and quality of substrate across the seasons.


Journal of Invertebrate Pathology | 2015

Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission

Joanna Małagocka; Morten Nedergaard Grell; Lene Lange; Jørgen Eilenberg; Annette Bruun Jensen

Pandora formicae is an obligate entomopathogenic fungus from the phylum Entomophthoromycota, known to infect only ants from the genus Formica. In the final stages of infection, the fungus induces the so-called summit disease syndrome, manipulating the host to climb up vegetation prior to death and fixing the dead cadaver to the surface, all to increase efficient spore dispersal. To investigate this fascinating pathogen-host interaction, we constructed interaction transcriptome libraries from two final infection stages from the material sampled in the field: (1) when the cadavers were fixed, but the fungus had not grown out through the cuticle and (2) when the fungus was growing out from host cadaver and producing spores. These phases mark the switch from within-host growth to reproduction on the host surface, after fungus outgrowth through host integument. In this first de novo transcriptome of an entomophthoralean fungus, we detected expression of many pathogenicity-related genes, including secreted hydrolytic enzymes and genes related to morphological reorganization and nutrition uptake. Differences in expression of genes in these two infection phases were compared and showed a switch in enzyme expression related to either cuticle breakdown or cell proliferation and cell wall remodeling, particularly in subtilisin-like serine protease and trypsin-like protease transcripts.

Collaboration


Dive into the Lene Lange's collaboration.

Top Co-Authors

Avatar

Peter Kamp Busk

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Pilgaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anne S. Meyer

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge