Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boaz Nadler is active.

Publication


Featured researches published by Boaz Nadler.


IEEE Transactions on Signal Processing | 2009

Non-Parametric Detection of the Number of Signals: Hypothesis Testing and Random Matrix Theory

Shira Kritchman; Boaz Nadler

Detection of the number of signals embedded in noise is a fundamental problem in signal and array processing. This paper focuses on the non-parametric setting where no knowledge of the array manifold is assumed. First, we present a detailed statistical analysis of this problem, including an analysis of the signal strength required for detection with high probability, and the form of the optimal detection test under certain conditions where such a test exists. Second, combining this analysis with recent results from random matrix theory, we present a new algorithm for detection of the number of sources via a sequence of hypothesis tests. We theoretically analyze the consistency and detection performance of the proposed algorithm, showing its superiority compared to the standard minimum description length (MDL)-based estimator. A series of simulations confirm our theoretical analysis.


computer vision and pattern recognition | 2011

Natural image denoising: Optimality and inherent bounds

Anat Levin; Boaz Nadler

The goal of natural image denoising is to estimate a clean version of a given noisy image, utilizing prior knowledge on the statistics of natural images. The problem has been studied intensively with considerable progress made in recent years. However, it seems that image denoising algorithms are starting to converge and recent algorithms improve over previous ones by only fractional dB values. It is thus important to understand how much more can we still improve natural image denoising algorithms and what are the inherent limits imposed by the actual statistics of the data. The challenge in evaluating such limits is that constructing proper models of natural image statistics is a long standing and yet unsolved problem. To overcome the absence of accurate image priors, this paper takes a non parametric approach and represents the distribution of natural images using a huge set of 1010 patches. We then derive a simple statistical measure which provides a lower bound on the optimal Bayesian minimum mean square error (MMSE). This imposes a limit on the best possible results of denoising algorithms which utilize a fixed support around a denoised pixel and a generic natural image prior. Our findings suggest that for small windows, state of the art denoising algorithms are approaching optimality and cannot be further improved beyond ∼ 0.1dB values.


IEEE Transactions on Signal Processing | 2010

Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator

Boaz Nadler

Determining the number of sources from observed data is a fundamental problem in many scientific fields. In this paper we consider the nonparametric setting, and focus on the detection performance of two popular estimators based on information theoretic criteria, the Akaike information criterion (AIC) and minimum description length (MDL). We present three contributions on this subject. First, we derive a new expression for the detection performance of the MDL estimator, which exhibits a much closer fit to simulations in comparison to previous formulas. Second, we present a random matrix theory viewpoint of the performance of the AIC estimator, including approximate analytical formulas for its overestimation probability. Finally, we show that a small increase in the penalty term of AIC leads to an estimator with a very good detection performance and a negligible overestimation probability.


Multiscale Modeling & Simulation | 2008

Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems

Ronald R. Coifman; Ioannis G. Kevrekidis; Stephane Lafon; Mauro Maggioni; Boaz Nadler

The concise representation of complex high dimensional stochastic systems via a few reduced coordinates is an important problem in computational physics, chemistry, and biology. In this paper we use the first few eigenfunctions of the backward Fokker–Planck diffusion operator as a coarse-grained low dimensional representation for the long-term evolution of a stochastic system and show that they are optimal under a certain mean squared error criterion. We denote the mapping from physical space to these eigenfunctions as the diffusion map. While in high dimensional systems these eigenfunctions are difficult to compute numerically by conventional methods such as finite differences or finite elements, we describe a simple computational data-driven method to approximate them from a large set of simulated data. Our method is based on defining an appropriately weighted graph on the set of simulated data and computing the first few eigenvectors and eigenvalues of the corresponding random walk matrix on this graph...


The Annals of Applied Statistics | 2008

Treelets—An adaptive multi-scale basis for sparse unordered data

Ann B. Lee; Boaz Nadler; Larry Wasserman

In many modern applications, including analysis of gene expression and text documents, the data are noisy, high-dimensional, and unordered--with no particular meaning to the given order of the variables. Yet, successful learning is often possible due to sparsity: the fact that the data are typically redundant with underlying structures that can be represented by only a few features. In this paper we present treelets--a novel construction of multi-scale bases that extends wavelets to nonsmooth signals. The method is fully adaptive, as it returns a hierarchical tree and an orthonormal basis which both reflect the internal structure of the data. Treelets are especially well-suited as a dimensionality reduction and feature selection tool prior to regression and classification, in situations where sample sizes are small and the data are sparse with unknown groupings of correlated or collinear variables. The method is also simple to implement and analyze theoretically. Here we describe a variety of situations where treelets perform better than principal component analysis, as well as some common variable selection and cluster averaging schemes. We illustrate treelets on a blocked covariance model and on several data sets (hyperspectral image data, DNA microarray data, and internet advertisements) with highly complex dependencies between variables.


Annals of Statistics | 2013

Minimax bounds for sparse PCA with noisy high-dimensional data

Aharon Birnbaum; Iain M. Johnstone; Boaz Nadler; Debashis Paul

We study the problem of estimating the leading eigenvectors of a high-dimensional population covariance matrix based on independent Gaussian observations. We establish a lower bound on the minimax risk of estimators under the l2 loss, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors. The lower bound on the risk points to the existence of different regimes of sparsity of the eigenvectors. We also propose a new method for estimating the eigenvectors by a two-stage coordinate selection scheme.


european conference on computer vision | 2012

Patch complexity, finite pixel correlations and optimal denoising

Anat Levin; Boaz Nadler; William T. Freeman

Image restoration tasks are ill-posed problems, typically solved with priors. Since the optimal prior is the exact unknown density of natural images, actual priors are only approximate and typically restricted to small patches. This raises several questions: How much may we hope to improve current restoration results with future sophisticated algorithms? And more fundamentally, even with perfect knowledge of natural image statistics, what is the inherent ambiguity of the problem? In addition, since most current methods are limited to finite support patches or kernels, what is the relation between the patch complexity of natural images, patch size, and restoration errors? Focusing on image denoising, we make several contributions. First, in light of computational constraints, we study the relation between denoising gain and sample size requirements in a non parametric approach. We present a law of diminishing return, namely that with increasing patch size, rare patches not only require a much larger dataset, but also gain little from it. This result suggests novel adaptive variable-sized patch schemes for denoising. Second, we study absolute denoising limits, regardless of the algorithm used, and the converge rate to them as a function of patch size. Scale invariance of natural images plays a key role here and implies both a strictly positive lower bound on denoising and a power law convergence. Extrapolating this parametric law gives a ballpark estimate of the best achievable denoising, suggesting that some improvement, although modest, is still possible.


international conference on communications | 2011

Performance of Eigenvalue-Based Signal Detectors with Known and Unknown Noise Level

Boaz Nadler; Federico Penna; Roberto Garello

In this paper we consider signal detection in cognitive radio networks, under a non-parametric, multi-sensor detection scenario, and compare the cases of known and unknown noise level. The analysis is focused on two eigenvalue-based methods, namely Roys largest root test, which requires knowledge of the noise variance, and the generalized likelihood ratio test, which can be interpreted as a test of the largest eigenvalue vs. a maximum-likelihood estimate of the noise variance. The detection performance of the two considered methods is expressed by closed-form analytical formulas, shown to be accurate even for small number of sensors and samples. We then derive an expression of the gap between the two detectors in terms of the signal-to-noise ratio of the signal to be detected, and we identify critical settings where this gap is significant (e.g., low number of sensors and signal strength). Our results thus provide a measure of the impact of noise level knowledge and highlight the importance of accurate noise estimation.


Siam Journal on Imaging Sciences | 2009

Diffusion Interpretation of Nonlocal Neighborhood Filters for Signal Denoising

Amit Singer; Yoel Shkolnisky; Boaz Nadler

Nonlocal neighborhood filters are modern and powerful techniques for image and signal denoising. In this paper, we give a probabilistic interpretation and analysis of the method viewed as a random walk on the patch space. We show that the method is intimately connected to the characteristics of diffusion processes, their escape times over potential barriers, and their spectral decomposition. In particular, the eigenstructure of the diffusion operator leads to novel insights on the performance and limitations of the denoising method, as well as a proposal for an improved filtering algorithm.


The Journal of Neuroscience | 2010

Global Features of Neural Activity in the Olfactory System Form a Parallel Code That Predicts Olfactory Behavior and Perception

Rafi Haddad; Tali Weiss; Rehan M. Khan; Boaz Nadler; Nathalie Mandairon; Moustafa Bensafi; Elad Schneidman; Noam Sobel

Odor identity is coded in spatiotemporal patterns of neural activity in the olfactory bulb. Here we asked whether meaningful olfactory information could also be read from the global olfactory neural population response. We applied standard statistical methods of dimensionality-reduction to neural activity from 12 previously published studies using seven different species. Four studies reported olfactory receptor activity, seven reported glomerulus activity, and one reported the activity of projection-neurons. We found two linear axes of neural population activity that accounted for more than half of the variance in neural response across species. The first axis was correlated with the total sum of odor-induced neural activity, and reflected the behavior of approach or withdrawal in animals, and odorant pleasantness in humans. The second and orthogonal axis reflected odorant toxicity across species. We conclude that in parallel with spatiotemporal pattern coding, the olfactory system can use simple global computations to read vital olfactory information from the neural population response.

Collaboration


Dive into the Boaz Nadler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel Jaffe

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Oren Raz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nirit Dudovich

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ronen Basri

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge