Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nirit Dudovich is active.

Publication


Featured researches published by Nirit Dudovich.


Nature | 2002

Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy

Nirit Dudovich; Dan Oron; Yaron Silberberg

Molecular vibrations have oscillation periods that reflect the molecular structure, and are hence being used as a spectroscopic fingerprint for detection and identification. At present, all nonlinear spectroscopy schemes use two or more laser beams to measure such vibrations. The availability of ultrashort (femtosecond) optical pulses with durations shorter than typical molecular vibration periods has enabled the coherent excitation of molecular vibrations using a single pulse. Here we perform single-pulse vibrational spectroscopy on several molecules in the liquid phase, where both the excitation and the readout processes are performed by the same pulse. The main difficulty with single-pulse spectroscopy is that all vibrational levels with energies within the pulse bandwidth are excited. We achieve high spectral resolution, nearly two orders of magnitude better than the pulse bandwidth, by using quantum coherent control techniques. By appropriately modulating the spectral phase of the pulse we are able to exploit the quantum interference between multiple paths to selectively populate a given vibrational level, and to probe this population using the same pulse. This scheme, using a single broadband laser source, is particularly attractive for nonlinear microscopy applications, as we demonstrate by constructing a coherent anti-Stokes Raman (CARS) microscope operating with a single laser beam.


Nature | 2009

High harmonic interferometry of multi-electron dynamics in molecules

Olga Smirnova; Y. Mairesse; S. Patchkovskii; Nirit Dudovich; D. M. Villeneuve; P. B. Corkum; Misha Ivanov

High harmonic emission occurs when an electron, liberated from a molecule by an incident intense laser field, gains energy from the field and recombines with the parent molecular ion. The emission provides a snapshot of the structure and dynamics of the recombining system, encoded in the amplitudes, phases and polarization of the harmonic light. Here we show with CO2 molecules that high harmonic interferometry can retrieve this structural and dynamic information: by measuring the phases and amplitudes of the harmonic emission, we reveal ‘fingerprints’ of multiple molecular orbitals participating in the process and decode the underlying attosecond multi-electron dynamics, including the dynamics of electron rearrangement upon ionization. These findings establish high harmonic interferometry as an effective approach to resolving multi-electron dynamics with sub-Ångström spatial resolution arising from the de Broglie wavelength of the recombining electron, and attosecond temporal resolution arising from the timescale of the recombination event.


Physical Review Letters | 2001

Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions

Barak Dayan; Nirit Dudovich; Sarah M. Gallagher Faeder; Yaron Silberberg

Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulses peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.


Nature | 2012

Resolving the time when an electron exits a tunnelling barrier

D. Shafir; Hadas Soifer; Barry D. Bruner; Michal Dagan; Y. Mairesse; Serguei Patchkovskii; Misha Ivanov; Olga Smirnova; Nirit Dudovich

The tunnelling of a particle through a barrier is one of the most fundamental and ubiquitous quantum processes. When induced by an intense laser field, electron tunnelling from atoms and molecules initiates a broad range of phenomena such as the generation of attosecond pulses, laser-induced electron diffraction and holography. These processes evolve on the attosecond timescale (1 attosecond ≡ 1 as = 10−18 seconds) and are well suited to the investigation of a general issue much debated since the early days of quantum mechanics—the link between the tunnelling of an electron through a barrier and its dynamics outside the barrier. Previous experiments have measured tunnelling rates with attosecond time resolution and tunnelling delay times. Here we study laser-induced tunnelling by using a weak probe field to steer the tunnelled electron in the lateral direction and then monitor the effect on the attosecond light bursts emitted when the liberated electron re-encounters the parent ion. We show that this approach allows us to measure the time at which the electron exits from the tunnelling barrier. We demonstrate the high sensitivity of the measurement by detecting subtle delays in ionization times from two orbitals of a carbon dioxide molecule. Measurement of the tunnelling process is essential for all attosecond experiments where strong-field ionization initiates ultrafast dynamics. Our approach provides a general tool for time-resolving multi-electron rearrangements in atoms and molecules—one of the key challenges in ultrafast science.


Journal of Chemical Physics | 2003

Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region

Nirit Dudovich; Dan Oron; Yaron Silberberg

Quantum coherent control techniques are applied to achieve high spectral resolution nonlinear vibrational spectroscopy using a single ultrashort laser source. By controlling the spectral phase of ∼10 fs pulses, we are able to obtain detailed coherent anti-Stokes Raman (CARS) spectra in the important fingerprint spectral region, which reflects the structural chemical information. A full theoretical analysis and an experimental demonstration of two alternative schemes leading to spectral resolution two orders of magnitude better than the pulse bandwidth are presented. The first involves selective excitation of vibrational levels within the pulse bandwidth by periodic modulation of the spectral phase of the pulse. In the second scheme an effective narrow probing of the vibrational level has been achieved by phase shifting of a narrow spectral band. Single-pulse CARS offers an attractive alternative to conventional multibeam nonlinear vibrational spectroscopy techniques.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Strong-field control and spectroscopy of attosecond electron-hole dynamics in molecules

Olga Smirnova; Serguei Patchkovskii; Y. Mairesse; Nirit Dudovich; Misha Ivanov

Molecular structures, dynamics and chemical properties are determined by shared electrons in valence shells. We show how one can selectively remove a valence electron from either Π vs. Σ or bonding vs. nonbonding orbital by applying an intense infrared laser field to an ensemble of aligned molecules. In molecules, such ionization often induces multielectron dynamics on the attosecond time scale. Ionizing laser field also allows one to record and reconstruct these dynamics with attosecond temporal and sub-Ångstrom spatial resolution. Reconstruction relies on monitoring and controlling high-frequency emission produced when the liberated electron recombines with the valence shell hole created by ionization.


Physical Review Letters | 2010

Near-threshold high-order harmonic spectroscopy with aligned molecules.

Hadas Soifer; Pierre Botheron; D. Shafir; A. Diner; Oren Raz; Barry D. Bruner; Y. Mairesse; B. Pons; Nirit Dudovich

We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This Letter shows that high-harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.


IEEE Transactions on Signal Processing | 2013

Vectorial Phase Retrieval of 1-D Signals

Oren Raz; Nirit Dudovich; Boaz Nadler

Reconstruction of signals from measurements of their spectral intensities, also known as the phase retrieval problem, is of fundamental importance in many scientific fields. In this paper we present a novel framework, denoted as vectorial phase retrieval, for reconstruction of pairs of signals from spectral intensity measurements of the two signals and of their interference. We show that this new framework can alleviate some of the theoretical and computational challenges associated with classical phase retrieval from a single signal. First, we prove that for compactly supported signals, in the absence of measurement noise, this new setup admits a unique solution. Next, we present a statistical analysis of vectorial phase retrieval and derive a computationally efficient algorithm to solve it. Finally, we illustrate via simulations, that our algorithm can accurately reconstruct signals even at considerable noise levels.


Nature Communications | 2015

Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation

A. Ferré; Andrey E. Boguslavskiy; Michal Dagan; Valérie Blanchet; B. D. Bruner; F. Burgy; Antoine Camper; Dominique Descamps; B. Fabre; N. Fedorov; J. Gaudin; G. Geoffroy; J. Mikosch; Serguei Patchkovskii; S. Petit; Thierry Ruchon; Hadas Soifer; David Staedter; Iain Wilkinson; Albert Stolow; Nirit Dudovich; Y. Mairesse

High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20–26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected.


New Journal of Physics | 2008

Electron wavepacket control with elliptically polarized laser light in high harmonic generation from aligned molecules

Y. Mairesse; Nirit Dudovich; J. Levesque; M. Yu. Ivanov; P. B. Corkum; D. M. Villeneuve

We study experimentally and theoretically the high harmonic emission from aligned samples of nitrogen and carbon dioxide, in an elliptically polarized laser field. The ellipticity induces a lateral shift of the recombining electron wavepacket in the generation process. We show that this effect, which is well known from high harmonic generation (HHG) in atoms, can be useful to maintain the plane wave approximation in the case of HHG from molecules whose orbitals contain nodal planes. The study of the harmonic signal as a function of molecular alignment also reveals the role of the ellipticity on the recollision angle of the electron wavepacket, which can be used to accurately track the position of resonances in harmonic spectra.

Collaboration


Dive into the Nirit Dudovich's collaboration.

Top Co-Authors

Avatar

Y. Mairesse

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

Barry D. Bruner

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dan Oron

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hadas Soifer

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Yaron Silberberg

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. B. Corkum

National Research Council

View shared research outputs
Top Co-Authors

Avatar

D. Shafir

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Oren Raz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Olga Smirnova

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge