Bob B. Buckley
University of California, Santa Barbara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bob B. Buckley.
Nature | 2011
William F. Koehl; Bob B. Buckley; F. Joseph Heremans; Greg Calusine; D. D. Awschalom
Electronic spins in semiconductors have been used extensively to explore the limits of external control over quantum mechanical phenomena. A long-standing goal of this research has been to identify or develop robust quantum systems that can be easily manipulated, for future use in advanced information and communication technologies. Recently, a point defect in diamond known as the nitrogen–vacancy centre has attracted a great deal of interest because it possesses an atomic-scale electronic spin state that can be used as an individually addressable, solid-state quantum bit (qubit), even at room temperature. These exceptional quantum properties have motivated efforts to identify similar defects in other semiconductors, as they may offer an expanded range of functionality not available to the diamond nitrogen–vacancy centre. Notably, several defects in silicon carbide (SiC) have been suggested as good candidates for exploration, owing to a combination of computational predictions and magnetic resonance data. Here we demonstrate that several defect spin states in the 4H polytype of SiC (4H-SiC) can be optically addressed and coherently controlled in the time domain at temperatures ranging from 20 to 300 kelvin. Using optical and microwave techniques similar to those used with diamond nitrogen–vacancy qubits, we study the spin-1 ground state of each of four inequivalent forms of the neutral carbon–silicon divacancy, as well as a pair of defect spin states of unidentified origin. These defects are optically active near telecommunication wavelengths, and are found in a host material for which there already exist industrial-scale crystal growth and advanced microfabrication techniques. In addition, they possess desirable spin coherence properties that are comparable to those of the diamond nitrogen–vacancy centre. This makes them promising candidates for various photonic, spintronic and quantum information applications that merge quantum degrees of freedom with classical electronic and optical technologies.
Proceedings of the National Academy of Sciences of the United States of America | 2010
J. R. Weber; William F. Koehl; Joel B. Varley; Anderson Janotti; Bob B. Buckley; C. G. Van de Walle; D. D. Awschalom
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV-1) center stands out for its robustness—its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.
Nature Communications | 2013
Abram L. Falk; Bob B. Buckley; Greg Calusine; William F. Koehl; V. V. Dobrovitski; Alberto Politi; Christian A. Zorman; Philip X.-L. Feng; D. D. Awschalom
Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to ‘designer’ spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including states in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron–electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent states, these interactions provide a route to dipole-coupled networks of separately addressable spins.
Science | 2010
Bob B. Buckley; Gregory D. Fuchs; Lee C. Bassett; D. D. Awschalom
Dressing-Up Diamond Defects The spin states of nitrogen vacancy defects in diamond are being explored as information carriers and memories in quantum information systems. Their long lifetimes, fast manipulation rates, and the ability to couple them to adjacent electronic and nuclear spins provide the necessary properties for implementation in solid-state quantum networks. To date, however, the readout of the spin state via photoluminescence, either directly or indirectly, results in the destruction of the spin state. Buckley et al. (p. 1212, published online 14 October; see the Perspective by Milburn) have formed a light-matter hybrid state in which the spin interacts with laser light to form a polariton state. This hybrid state can be optically probed to produce a nondestructive measurement and manipulation technique for the spin state of the nitrogen-vacancy center. Optical pulses were used to nondestructively probe and manipulate the spin state of nitrogen vacancy defects in diamond. The exceptional spin coherence of nitrogen-vacancy centers in diamond motivates their function in emerging quantum technologies. Traditionally, the spin state of individual centers is measured optically and destructively. We demonstrate dispersive, single-spin coupling to light for both nondestructive spin measurement, through the Faraday effect, and coherent spin manipulation, through the optical Stark effect. These interactions can enable the coherent exchange of quantum information between single nitrogen-vacancy spins and light, facilitating coherent measurement, control, and entanglement that is scalable over large distances.
Applied Physics Letters | 2010
Anthony Richardella; Duming Zhang; Joungchel Lee; A. Koser; David Rench; A. L. Yeats; Bob B. Buckley; D. D. Awschalom; Nitin Samarth
We report the heteroepitaxy of single crystal thin films of Bi2Se3 on the (111)B surface of GaAs by molecular beam epitaxy. We find that Bi2Se3 grows highly c-axis oriented, with an atomically sharp interface with the GaAs substrate. By optimizing the growth of a very thin GaAs buffer layer before growing the Bi2Se3, we demonstrate the growth of thin films with atomically flat terraces over hundreds of nanometers. Initial time-resolved Kerr rotation measurements herald opportunities for probing coherent spin dynamics at the interface between a candidate topological insulator and a large class of GaAs-based heterostructures.
Physical Review X | 2012
D.M. Toyli; David J. Christle; Audrius Alkauskas; Bob B. Buckley; C. G. Van de Walle; D. D. Awschalom
We study the spin and orbital dynamics of single nitrogen-vacancy (NV) centers in diamond between room temperature and 700 K. We find that the ability to optically address and coherently control single spins above room temperature is limited by nonradiative processes that quench the NV centers fluorescence-based spin readout between 550 and 700 K. Combined with electronic structure calculations, our measurements indicate that the energy difference between the 3E and 1A1 electronic states is approximately 0.8 eV. We also demonstrate that the inhomogeneous spin lifetime (T2*) is temperature independent up to at least 625 K, suggesting that single NV centers could be applied as nanoscale thermometers over a broad temperature range.
Advanced Materials | 2012
Igor Aharonovich; Jonathan C. Lee; Andrew P. Magyar; Bob B. Buckley; Christopher G. Yale; D. D. Awschalom; Evelyn L. Hu
Homoepitaxial growth of single crystal diamond membranes is demonstrated employing a microwave plasma chemical vapor deposition technique. The membranes possess excellent structural, optical, and spin properties, which make them suitable for fabrication of optical microcavities for applications in quantum information processing, photonics, spintronics, and sensing.
Physical Review Letters | 2014
Abram L. Falk; Paul V. Klimov; Bob B. Buckley; Viktor Ivády; Igor A. Abrikosov; Greg Calusine; William F. Koehl; Adam Gali; D. D. Awschalom
The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Christopher G. Yale; Bob B. Buckley; David J. Christle; Guido Burkard; F. Joseph Heremans; Lee C. Bassett; D. D. Awschalom
The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin-selective intersystem crossing, while microwave electron spin resonance techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be performed directly along any arbitrarily chosen quantum basis, removing the need for extra control steps to map the spin to and from a preferred basis. Combining these protocols, we perform measurements of the NV center’s spin coherence, a demonstration of this full optical control. Consisting solely of optical pulses, these techniques enable control within a smaller footprint and within photonic networks. Likewise, this unified approach obviates the need for both electron spin resonance manipulation and spin addressability through the intersystem crossing. This method could therefore be applied to a wide range of potential solid-state qubits, including those which currently lack a means to be addressed.
Physical Review Letters | 2011
Lee C. Bassett; F. J. Heremans; Christopher G. Yale; Bob B. Buckley; D. D. Awschalom
We demonstrate precise control over the zero-phonon optical transition energies of individual nitrogen-vacancy (NV) centers in diamond by applying multiaxis electric fields, via the dc Stark effect. The Stark shifts display surprising asymmetries that we attribute to an enhancement and rectification of the local electric field by photoionized charge traps in the diamond. Using this effect, we tune the excited-state orbitals of strained NV centers to degeneracy and vary the resulting degenerate optical transition frequency by >10 GHz, a scale comparable to the inhomogeneous frequency distribution. This technique will facilitate the integration of NV-center spins within photonic networks.