David J. Christle
University of California, Santa Barbara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. Christle.
Proceedings of the National Academy of Sciences of the United States of America | 2013
D.M. Toyli; Charles F. de las Casas; David J. Christle; V. V. Dobrovitski; D. D. Awschalom
We demonstrate fluorescence thermometry techniques with sensitivities approaching 10 mK⋅Hz−1/2 based on the spin-dependent photoluminescence of nitrogen vacancy (NV) centers in diamond. These techniques use dynamical decoupling protocols to convert thermally induced shifts in the NV centers spin resonance frequencies into large changes in its fluorescence. By mitigating interactions with nearby nuclear spins and facilitating selective thermal measurements, these protocols enhance the spin coherence times accessible for thermometry by 45-fold, corresponding to a 7-fold improvement in the NV center’s temperature sensitivity. Moreover, we demonstrate these techniques can be applied over a broad temperature range and in both finite and near-zero magnetic field environments. This versatility suggests that the quantum coherence of single spins could be practically leveraged for sensitive thermometry in a wide variety of biological and microscale systems.
Nature Materials | 2015
David J. Christle; Abram L. Falk; Paolo Andrich; Paul V. Klimov; Jawad ul Hassan; Nguyen Tien Son; Erik Janzén; Takeshi Ohshima; D. D. Awschalom
The elimination of defects from SiC has facilitated its move to the forefront of the optoelectronics and power-electronics industries. Nonetheless, because certain SiC defects have electronic states with sharp optical and spin transitions, they are increasingly recognized as a platform for quantum information and nanoscale sensing. Here, we show that individual electron spins in high-purity monocrystalline 4H-SiC can be isolated and coherently controlled. Bound to neutral divacancy defects, these states exhibit exceptionally long ensemble Hahn-echo spin coherence times, exceeding 1 ms. Coherent control of single spins in a material amenable to advanced growth and microfabrication techniques is an exciting route towards wafer-scale quantum technologies.
Physical Review X | 2012
D.M. Toyli; David J. Christle; Audrius Alkauskas; Bob B. Buckley; C. G. Van de Walle; D. D. Awschalom
We study the spin and orbital dynamics of single nitrogen-vacancy (NV) centers in diamond between room temperature and 700 K. We find that the ability to optically address and coherently control single spins above room temperature is limited by nonradiative processes that quench the NV centers fluorescence-based spin readout between 550 and 700 K. Combined with electronic structure calculations, our measurements indicate that the energy difference between the 3E and 1A1 electronic states is approximately 0.8 eV. We also demonstrate that the inhomogeneous spin lifetime (T2*) is temperature independent up to at least 625 K, suggesting that single NV centers could be applied as nanoscale thermometers over a broad temperature range.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Viva R. Horowitz; Benjamín Alemán; David J. Christle; A. N. Cleland; D. D. Awschalom
Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Christopher G. Yale; Bob B. Buckley; David J. Christle; Guido Burkard; F. Joseph Heremans; Lee C. Bassett; D. D. Awschalom
The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin-selective intersystem crossing, while microwave electron spin resonance techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be performed directly along any arbitrarily chosen quantum basis, removing the need for extra control steps to map the spin to and from a preferred basis. Combining these protocols, we perform measurements of the NV center’s spin coherence, a demonstration of this full optical control. Consisting solely of optical pulses, these techniques enable control within a smaller footprint and within photonic networks. Likewise, this unified approach obviates the need for both electron spin resonance manipulation and spin addressability through the intersystem crossing. This method could therefore be applied to a wide range of potential solid-state qubits, including those which currently lack a means to be addressed.
Science | 2014
Lee C. Bassett; F. Joseph Heremans; David J. Christle; Christopher G. Yale; Guido Burkard; Bob B. Buckley; D. D. Awschalom
Manipulating a defect in diamond Like magnetic storage in todays classical computers, tiny “magnets” associated with electronic and nuclear states—spins—are promising qubits (quantum bits) for the future. Electronic spins in special defects in diamond called nitrogen-vacancy (NV) centers are one example. Whereas most applications focus on the least energetic (ground) state of an NV center, Bassett et al. explored the properties of the higher-energy (excited) state (see the Perspective by Childress). They used light pulses to bring the system into the excited state and to vary the time it stayed there. In this way, they could both deduce the electronic structure of the excited state and manipulate the ground state spin. Similar methods may be applicable to other quantum information systems. Science, this issue p. 1333; see also p. 1247 The electronic spin in a nitrogen-vacancy center in diamond is manipulated with optical pulses alone. [Also see Perspective by Childress] Atom-scale defects in semiconductors are promising building blocks for quantum devices, but our understanding of their material-dependent electronic structure, optical interactions, and dissipation mechanisms is lacking. Using picosecond resonant pulses of light, we study the coherent orbital and spin dynamics of a single nitrogen-vacancy center in diamond over time scales spanning six orders of magnitude. We develop a time-domain quantum tomography technique to precisely map the defect’s excited-state Hamiltonian and exploit the excited-state dynamics to control its ground-state spin with optical pulses alone. These techniques generalize to other optically addressable nanoscale spin systems and serve as powerful tools to characterize and control spin qubits for future applications in quantum technology.
Science Advances | 2015
Paul V. Klimov; Abram L. Falk; David J. Christle; V. V. Dobrovitski; D. D. Awschalom
On-demand generation of many maximally entangled Bell states in a room-temperature semiconductor at low magnetic field. Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
Physical Review X | 2017
David J. Christle; Paul V. Klimov; Charles F. de las Casas; Krisztián Szász; Viktor Ivády; Valdas Jokubavicius; Jawad ul Hassan; Mikael Syväjärvi; William F. Koehl; Takeshi Ohshima; Nguyen Tien Son; Erik Janzén; Adam Gali; D. D. Awschalom
The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects. DOI:https://doi.org/10.1103/PhysRevX.7.021046 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Published by the American Physical Society
Physical Review B | 2015
Viktor Ivády; Krisztián Szász; Abram L. Falk; Paul V. Klimov; David J. Christle; Erik Janzén; Igor A. Abrikosov; D. D. Awschalom; Adam Gali
Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolariza ...
Applied Physics Letters | 2017
Charles F. de las Casas; David J. Christle; Jawad ul Hassan; Takeshi Ohshima; Nguyen Tien Son; D. D. Awschalom
Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects, and hinders their coupling to optical cavities. Here we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show both 975 nm and 1130 nm excitation can prepare its neutral charge state with near unity efficiency.