Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bob Goldstein is active.

Publication


Featured researches published by Bob Goldstein.


Nature Methods | 2013

Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination

Daniel J. Dickinson; Jordan D. Ward; David J. Reiner; Bob Goldstein

Study of the nematode Caenorhabditis elegans has provided important insights in a wide range of fields in biology. The ability to precisely modify genomes is critical to fully realize the utility of model organisms. Here we report a method to edit the C. elegans genome using the clustered, regularly interspersed, short palindromic repeats (CRISPR) RNA-guided Cas9 nuclease and homologous recombination. We demonstrate that Cas9 is able to induce DNA double-strand breaks with specificity for targeted sites and that these breaks can be repaired efficiently by homologous recombination. By supplying engineered homologous repair templates, we generated gfp knock-ins and targeted mutations. Together our results outline a flexible methodology to produce essentially any desired modification in the C. elegans genome quickly and at low cost. This technology is an important addition to the array of genetic techniques already available in this experimentally tractable model organism.


Developmental Biology | 2010

Apical constriction: A cell shape change that can drive morphogenesis

Jacob M. Sawyer; Jessica R. Harrell; Gidi Shemer; Jessica Sullivan-Brown; Minna Roh-Johnson; Bob Goldstein

Biologists have long recognized that dramatic bending of a cell sheet may be driven by even modest shrinking of the apical sides of cells. Cell shape changes and tissue movements like these are at the core of many of the morphogenetic movements that shape animal form during development, driving processes such as gastrulation, tube formation, and neurulation. The mechanisms of such cell shape changes must integrate developmental patterning information in order to spatially and temporally control force production-issues that touch on fundamental aspects of both cell and developmental biology and on birth defects research. How does developmental patterning regulate force-producing mechanisms, and what roles do such mechanisms play in development? Work on apical constriction from multiple systems including Drosophila, Caenorhabditis elegans, sea urchin, Xenopus, chick, and mouse has begun to illuminate these issues. Here, we review this effort to explore the diversity of mechanisms of apical constriction, the diversity of roles that apical constriction plays in development, and the common themes that emerge from comparing systems.


Current Biology | 2004

C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes.

Rebecca J Cheeks; Julie C. Canman; Willow N. Gabriel; Nicole Meyer; Susan Strome; Bob Goldstein

BACKGROUND The PAR proteins are part of an ancient and widely conserved machinery for polarizing cells during animal development. Here we use a combination of genetics and live imaging methods in the model organism Caenorhabditis elegans to dissect the cellular mechanisms by which PAR proteins polarize cells. RESULTS We demonstrate two distinct mechanisms by which PAR proteins polarize the C. elegans zygote. First, we show that several components of the PAR pathway function in intracellular motility, producing a polarized movement of the cell cortex. We present evidence that this cortical motility may drive the movement of cellular components that must become asymmetrically distributed, including both germline-specific ribonucleoprotein complexes and cortical domains containing the PAR proteins themselves. Second, PAR-1 functions to refine the asymmetric localization of germline ribonucleoprotein complexes by selectively stabilizing only those complexes that reach the PAR-1-enriched posterior cell cortex during the period of cortical motility. CONCLUSIONS These results identify two cellular mechanisms by which the PAR proteins polarize the C. elegans zygote, and they suggest mechanisms by which PAR proteins may polarize cells in diverse animal systems.


Science | 2012

Triggering a Cell Shape Change by Exploiting Preexisting Actomyosin Contractions

Minna Roh-Johnson; Gidi Shemer; Christopher D. Higgins; Joseph H. McClellan; Adam D. Werts; U. Serdar Tulu; Liang Gao; Eric Betzig; Daniel P. Kiehart; Bob Goldstein

A Time and a Place The onset of morphogenetic cell shape changes is thought to be triggered by initiation of actomyosin contractions. Roh-Johnson et al. (p. 1232, published online 9 February; see the Perspective by Razzell and Martin) have now discovered in both Caenorhabditis elegans and Drosophila embryos that the actomyosin contractions driving morphogenesis run constitutively, only being engaged to trigger cell shape changes at a specific time during development. Morphogenesis in developing worms and flies harnesses ongoing cortical motility. Apical constriction changes cell shapes, driving critical morphogenetic events, including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both Caenorhabitis elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without substantial shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension, but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex.


Development | 2014

Apical constriction: themes and variations on a cellular mechanism driving morphogenesis

Adam C. Martin; Bob Goldstein

Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Using RNA interference to identify genes required for RNA interference

Nathaniel R. Dudley; Jean-Claude Labbé; Bob Goldstein

RNA interference (RNAi) is a phenomenon in which double-stranded RNA (dsRNA) silences endogenous gene expression. By injecting pools of dsRNAs into Caenorhabditis elegans, we identified a dsRNA that acts as a potent suppressor of the RNAi mechanism. We have used coinjection of dsRNAs to identify four additional candidates for genes involved in the RNAi mechanism in C. elegans. Three of the genes are C. elegans mes genes, some of which encode homologs of the Drosophila chromatin-binding Polycomb-group proteins. We have used loss-of-function mutants to confirm a role for mes-3, -4, and -6 in RNAi. Interestingly, introducing very low levels of dsRNA can bypass a requirement for these genes in RNAi. The finding that genes predicted to encode proteins that associate with chromatin are involved in RNAi in C. elegans raises the possibility that chromatin may play a role in RNAi in animals, as it does in plants.


Current Biology | 2006

Wnt/Frizzled Signaling Controls C. elegans Gastrulation by Activating Actomyosin Contractility

Jen Yi Lee; Daniel J. Marston; Timothy Walston; Jeff Hardin; Ari I. Halberstadt; Bob Goldstein

BACKGROUND Embryonic patterning mechanisms regulate the cytoskeletal machinery that drives morphogenesis, but there are few cases where links between patterning mechanisms and morphogenesis are well understood. We have used a combination of genetics, in vivo imaging, and cell manipulations to identify such links in C. elegans gastrulation. Gastrulation in C. elegans begins with the internalization of endodermal precursor cells in a process that depends on apical constriction of ingressing cells. RESULTS We show that ingression of the endodermal precursor cells is regulated by pathways, including a Wnt-Frizzled signaling pathway, that specify endodermal cell fate. We find that Wnt signaling has a role in gastrulation in addition to its earlier roles in regulating endodermal cell fate and cell-cycle timing. In the absence of Wnt signaling, endodermal precursor cells polarize and enrich myosin II apically but fail to contract their apical surfaces. We show that a regulatory myosin light chain normally becomes phosphorylated on the apical side of ingressing cells at a conserved site that can lead to myosin-filament formation and contraction of actomyosin networks and that this phosphorylation depends on Wnt signaling. CONCLUSIONS We conclude that Wnt signaling regulates C. elegans gastrulation through regulatory myosin light-chain phosphorylation, which results in the contraction of the apical surface of ingressing cells. These findings forge new links between cell-fate specification and morphogenesis, and they represent a novel mechanism by which Wnt signaling can regulate morphogenesis.


Genetics | 2015

Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette

Daniel J. Dickinson; Ariel M. Pani; Jennifer K. Heppert; Christopher D. Higgins; Bob Goldstein

A central goal in the development of genome engineering technology is to reduce the time and labor required to produce custom genome modifications. Here we describe a new selection strategy for producing fluorescent protein (FP) knock-ins using CRISPR/Cas9-triggered homologous recombination. We have tested our approach in Caenorhabditis elegans. This approach has been designed to minimize hands-on labor at each step of the procedure. Central to our strategy is a newly developed self-excising cassette (SEC) for drug selection. SEC consists of three parts: a drug-resistance gene, a visible phenotypic marker, and an inducible Cre recombinase. SEC is flanked by LoxP sites and placed within a synthetic intron of a fluorescent protein tag, resulting in an FP–SEC module that can be inserted into any C. elegans gene. Upon heat shock, SEC excises itself from the genome, leaving no exogenous sequences outside the fluorescent protein tag. With our approach, one can generate knock-in alleles in any genetic background, with no PCR screening required and without the need for a second injection step to remove the selectable marker. Moreover, this strategy makes it possible to produce a fluorescent protein fusion, a transcriptional reporter and a strong loss-of-function allele for any gene of interest in a single injection step.


Development | 2003

Mechanisms of cell positioning during C. elegans gastrulation

Jen Yi Lee; Bob Goldstein

Cell rearrangements are crucial during development. In this study, we use C. elegans gastrulation as a simple model to investigate the mechanisms of cell positioning. During C. elegans gastrulation, two endodermal precursor cells move from the ventral surface to the center of the embryo, leaving a gap between these ingressing cells and the eggshell. Six neighboring cells converge under the endodermal precursors, filling this gap. Using an in vitro system, we observed that these movements occurred consistently in the absence of the eggshell and the vitelline envelope. We found that movement of the neighbors towards each other is not dependent on chemotactic signaling between these cells. We further found that C. elegans gastrulation requires intact microfilaments, but not microtubules. The primary mechanism of microfilament-based motility does not appear to be through protrusive structures, such as lamellipodia or filopodia. Instead, our results suggest an alternative mechanism. We found that myosin activity is required for gastrulation, that the apical sides of the ingressing cells contract, and that the ingressing cells determine the direction of movement of their neighboring cells. Based on these results, we propose that ingression is driven by an actomyosin-based contraction of the apical side of the ingressing cells, which pulls neighboring cells underneath. We conclude that apical constriction can function to position blastomeres in early embryos, even before anchoring junctions form between cells.


Current Biology | 2003

PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans

Jean-Claude Labbé; Paul S. Maddox; E. D. Salmon; Bob Goldstein

BACKGROUND The PAR proteins are known to be localized asymmetrically in polarized C. elegans, Drosophila, and human cells and to participate in several cellular processes, including asymmetric cell division and spindle orientation. Although astral microtubules are known to play roles in these processes, their behavior during these events remains poorly understood. RESULTS We have developed a method that makes it possible to examine the residence time of individual astral microtubules at the cell cortex of developing embryos. Using this method, we found that microtubules are more dynamic at the posterior cortex of the C. elegans embryo compared to the anterior cortex during spindle displacement. We further observed that this asymmetry depends on the PAR-3 protein and heterotrimeric G protein signaling, and that the PAR-2 protein affects microtubule dynamics by restricting PAR-3 activity to the anterior of the embryo. CONCLUSIONS These results indicate that PAR proteins function to regulate microtubule dynamics at the cortex during microtubule-dependent cellular processes.

Collaboration


Dive into the Bob Goldstein's collaboration.

Top Co-Authors

Avatar

Daniel J. Dickinson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jen-Yi Lee

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jeremy Nance

University of California

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Boothby

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jennifer K. Heppert

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ariel M. Pani

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Higgins

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Marston

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Minna Roh-Johnson

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Adam D. Werts

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge