Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bobbi S. Pritt is active.

Publication


Featured researches published by Bobbi S. Pritt.


Clinical Infectious Diseases | 2013

A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)a

Ellen Jo Baron; J. Michael Miller; Melvin P. Weinstein; Sandra S. Richter; Richard B. Thomson; Paul P. Bourbeau; Karen C. Carroll; Sue C. Kehl; W. Michael Dunne; Barbara Robinson-Dunn; Joseph D. Schwartzman; Kimberle C. Chapin; James W. Snyder; Betty A. Forbes; Robin Patel; Jon E. Rosenblatt; Bobbi S. Pritt

Abstract The critical role of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician and the microbiologists who provide enormous value to the health care team. This document, developed by both laboratory and clinical experts, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. Sections are divided into anatomic systems, including Bloodstream Infections and Infections of the Cardiovascular System, Central Nervous System Infections, Ocular Infections, Soft Tissue Infections of the Head and Neck, Upper Respiratory Infections, Lower Respiratory Tract infections, Infections of the Gastrointestinal Tract, Intraabdominal Infections, Bone and Joint Infections, Urinary Tract Infections, Genital Infections, and Skin and Soft Tissue Infections; or into etiologic agent groups, including Tickborne Infections, Viral Syndromes, and Blood and Tissue Parasite Infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. There is redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a reference to guide physicians in choosing tests that will aid them to diagnose infectious diseases in their patients.


The New England Journal of Medicine | 2011

Emergence of a New Pathogenic Ehrlichia Species, Wisconsin and Minnesota, 2009

Bobbi S. Pritt; Lynne M. Sloan; Diep K. Hoang Johnson; Ulrike G. Munderloh; Susan M. Paskewitz; Kristina M. McElroy; Jevon McFadden; Matthew J. Binnicker; David F. Neitzel; Gongping Liu; William L. Nicholson; Curtis M. Nelson; Joni J. Franson; Scott A. Martin; Scott A. Cunningham; Christopher R. Steward; Kay Bogumill; Mary E. Bjorgaard; Jeffrey P. Davis; Jennifer H. McQuiston; David M. Warshauer; Mark P. Wilhelm; Robin Patel; Vipul A. Trivedi; Marina E. Eremeeva

BACKGROUND Ehrlichiosis is a clinically important, emerging zoonosis. Only Ehrlichia chaffeensis and E. ewingii have been thought to cause ehrlichiosis in humans in the United States. Patients with suspected ehrlichiosis routinely undergo testing to ensure proper diagnosis and to ascertain the cause. METHODS We used molecular methods, culturing, and serologic testing to diagnose and ascertain the cause of cases of ehrlichiosis. RESULTS On testing, four cases of ehrlichiosis in Minnesota or Wisconsin were found not to be from E. chaffeensis or E. ewingii and instead to be caused by a newly discovered ehrlichia species. All patients had fever, malaise, headache, and lymphopenia; three had thrombocytopenia; and two had elevated liver-enzyme levels. All recovered after receiving doxycycline treatment. At least 17 of 697 Ixodes scapularis ticks collected in Minnesota or Wisconsin were positive for the same ehrlichia species on polymerase-chain-reaction testing. Genetic analyses revealed that this new ehrlichia species is closely related to E. muris. CONCLUSIONS We report a new ehrlichia species in Minnesota and Wisconsin and provide supportive clinical, epidemiologic, culture, DNA-sequence, and vector data. Physicians need to be aware of this newly discovered close relative of E. muris to ensure appropriate testing, treatment, and regional surveillance. (Funded by the National Institutes of Health and the Centers for Disease Control and Prevention.).


Journal of Clinical Microbiology | 2014

Comparative Evaluation of Two Commercial Multiplex Panels for Detection of Gastrointestinal Pathogens by Use of Clinical Stool Specimens

Reeti Khare; Mark J. Espy; Elizabeth Cebelinski; David Boxrud; Lynne M. Sloan; Scott A. Cunningham; Bobbi S. Pritt; Robin Patel; Matthew J. Binnicker

ABSTRACT The detection of pathogens associated with gastrointestinal disease may be important in certain patient populations, such as immunocompromised hosts, the critically ill, or individuals with prolonged disease that is refractory to treatment. In this study, we evaluated two commercially available multiplex panels (the FilmArray gastrointestinal [GI] panel [BioFire Diagnostics, Salt Lake City, UT] and the Luminex xTag gastrointestinal pathogen panel [GPP] [Luminex Corporation, Toronto, Canada]) using Cary-Blair stool samples (n = 500) submitted to our laboratory for routine GI testing (e.g., culture, antigen testing, microscopy, and individual real-time PCR). At the time of this study, the prototype (non-FDA-cleared) FilmArray GI panel targeted 23 pathogens (14 bacterial, 5 viral, and 4 parasitic), and testing of 200 μl of Cary-Blair stool was recommended. In contrast, the Luminex GPP assay was FDA cleared for the detection of 11 pathogens (7 bacterial, 2 viral, and 2 parasitic), but had the capacity to identify 4 additional pathogens using a research-use-only protocol. Importantly, the Luminex assay was FDA cleared for 100 μl raw stool; however, 100 μl Cary-Blair stool was tested by the Luminex assay in this study. Among 230 prospectively collected samples, routine testing was positive for one or more GI pathogens in 19 (8.3%) samples, compared to 76 (33.0%) by the FilmArray and 69 (30.3%) by the Luminex assay. Clostridium difficile (12.6 to 13.9% prevalence) and norovirus genogroup I (GI)/GII (5.7 to 13.9% prevalence) were two of the pathogens most commonly detected by both assays among prospective samples. Sapovirus was also commonly detected (5.7% positive rate) by the FilmArray assay. Among 270 additional previously characterized samples, both multiplex panels demonstrated high sensitivity (>90%) for the majority of targets, with the exception of several pathogens, notably Aeromonas sp. (23.8%) by FilmArray and Yersinia enterocolitica (48.1%) by the Luminex assay. Interestingly, the FilmArray and Luminex panels identified mixed infections in 21.1% and 13.0% of positive prospective samples, respectively, compared to only 8.3% by routine methods.


Lancet Infectious Diseases | 2016

Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study

Bobbi S. Pritt; Paul S. Mead; Diep K. Hoang Johnson; David F. Neitzel; Laurel B. Respicio-Kingry; Jeffrey P. Davis; Elizabeth Schiffman; Lynne M. Sloan; Martin E. Schriefer; Adam J. Replogle; Susan M. Paskewitz; Julie Ray; Jenna Bjork; Christopher R. Steward; Alecia Deedon; Xia Lee; Luke C. Kingry; Tracy K. Miller; Michelle A. Feist; Elitza S. Theel; Robin Patel; Cole L. Irish; Jeannine M. Petersen

BACKGROUND Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. It is a multisystem disease caused by Borrelia burgdorferi sensu lato genospecies and characterised by tissue localisation and low spirochaetaemia. In this study we aimed to describe a novel Borrelia species causing Lyme borreliosis in the USA. METHODS At the Mayo clinic, from 2003 to 2014, we tested routine clinical diagnostic specimens from patients in the USA with PCR targeting the oppA1 gene of B burgdorferi sensu lato. We identified positive specimens with an atypical PCR result (melting temperature outside of the expected range) by sequencing, microscopy, or culture. We collected Ixodes scapularis ticks from regions of suspected patient tick exposure and tested them by oppA1 PCR. FINDINGS 100 545 specimens were submitted by physicians for routine PCR from Jan 1, 2003 to Sept 30, 2014. From these samples, six clinical specimens (five blood, one synovial fluid) yielded an atypical oppA1 PCR product, but no atypical results were detected before 2012. Five of the six patients with atypical PCR results had presented with fever, four had diffuse or focal rash, three had symptoms suggestive of neurological inclusion, and two were admitted to hospital. The sixth patient presented with knee pain and swelling. Motile spirochaetes were seen in blood samples from one patient and cultured from blood samples from two patients. Among the five blood specimens, the median oppA1 copy number was 180 times higher than that in 13 specimens that tested positive for B burgdorferi sensu stricto during the same time period. Multigene sequencing identified the spirochaete as a novel B burgdorferi sensu lato genospecies. This same genospecies was detected in ticks collected at a probable patient exposure site. INTERPRETATION We describe a new pathogenic Borrelia burgdorferi sensu lato genospecies (candidatus Borrelia mayonii) in the upper midwestern USA, which causes Lyme borreliosis with unusually high spirochaetaemia. Clinicians should be aware of this new B burgdorferi sensu lato genospecies, its distinct clinical features, and the usefulness of oppA1 PCR for diagnosis. FUNDING US Centers for Disease Control and Prevention Epidemiology and Laboratory Capacity for Infectious Diseases (ELC) Cooperative Agreement and Mayo Clinic Small Grant programme.


Archives of Pathology & Laboratory Medicine | 2005

Death certification errors at an academic institution.

Bobbi S. Pritt; Nicholas J. Hardin; Jeffrey A. Richmond; Steven L. Shapiro

CONTEXT The correctly completed death certificate provides invaluable personal, epidemiologic, and legal information and should be thorough and accurate. Death certification errors are common and range from minor to severe. OBJECTIVE To determine the frequency and type of errors by nonpathologist physicians at a university-affiliated medical center. DESIGN Fifty random patients were identified who died at this academic medical center between January 2002 and December 2003 and did not undergo an autopsy. From medical chart review, clinical summaries were produced. Two pathologists used these summaries to create mock death certificates. The original and mock death certificates were then compared to identify errors in the original certificate. Errors were graded on a I to IV scale, with grade IV being the most severe. RESULTS Of the 50 death certificates reviewed, grade I, II, and III errors were noted in 72%, 32%, and 30%, respectively. Seventeen certificates (34%) had grade IV errors (wrong cause or manner of death). Multiple errors were identified in 82% of the death certificates reviewed. CONCLUSIONS The rate of major (grade IV) death certification errors at this academic setting is high and is consistent with major error rates reported by other academic institutions. We attribute errors to house staff inexperience, fatigue, time constraints, unfamiliarity with the deceased, and perceived lack of importance of the death certificate. To counter these factors, we recommend a multifaceted approach, including an annual course in death certification and discussion of the death certificate for each deceased patient during physician rounds. These measures should result in increased accuracy of this important document.


Journal of Clinical Microbiology | 2013

Rapid Molecular Microbiologic Diagnosis of Prosthetic Joint Infection

Charles Cazanave; Kerryl E. Greenwood-Quaintance; Arlen D. Hanssen; Melissa J. Karau; Suzannah M. Schmidt; Eric O. Gomez Urena; Jayawant N. Mandrekar; Douglas R. Osmon; Lindsay E. Lough; Bobbi S. Pritt; James M. Steckelberg; Robin Patel

ABSTRACT We previously showed that culture of samples obtained by prosthesis vortexing and sonication was more sensitive than tissue culture for prosthetic joint infection (PJI) diagnosis. Despite improved sensitivity, culture-negative cases remained; furthermore, culture has a long turnaround time. We designed a genus-/group-specific rapid PCR assay panel targeting PJI bacteria and applied it to samples obtained by vortexing and sonicating explanted hip and knee prostheses, and we compared the results to those with sonicate fluid and periprosthetic tissue culture obtained at revision or resection arthroplasty. We studied 434 subjects with knee (n = 272) or hip (n = 162) prostheses; using a standardized definition, 144 had PJI. Sensitivities of tissue culture, of sonicate fluid culture, and of PCR were 70.1, 72.9, and 77.1%, respectively. Specificities were 97.9, 98.3, and 97.9%, respectively. Sonicate fluid PCR was more sensitive than tissue culture (P = 0.04). PCR of prosthesis sonication samples is more sensitive than tissue culture for the microbiologic diagnosis of prosthetic hip and knee infection and provides same-day PJI diagnosis with definition of microbiology. The high assay specificity suggests that typical PJI bacteria may not cause aseptic implant failure.


Journal of Clinical Microbiology | 2008

Real-Time PCR Method for Detection of Zygomycetes

D. Jane Hata; Seanne P. Buckwalter; Bobbi S. Pritt; Glenn D. Roberts; Nancy L. Wengenack

ABSTRACT Zygomycete infections can be devastating in immunocompromised hosts. Difficulties in the histopathologic differentiation of this class from other filamentous fungi (e.g., Aspergillus spp., Fusarium spp.) may lead to delays in diagnosis and initiation of appropriate treatment, thereby significantly affecting patient outcome. A real-time PCR assay was developed to detect species of the zygomycete genera Absidia, Apophysomyces, Cunninghamella, Mucor, Rhizopus, and Saksenaea in culture and tissue samples. Primers and fluorescence resonance energy transfer hybridization probes were designed to detect a 167-bp conserved region of the multicopy zygomycete cytochrome b gene. A plasmid containing target sequence from Mucor racemosus was constructed as a positive control. The analytical sensitivity of the assay is 10 targets/μl, and a specificity panel consisting of other filamentous fungi, yeasts (Candida spp.), and bacteria demonstrated no cross-reactivity in the assay. The clinical sensitivity and specificity of the assay from culture isolates were 100% (39/39) and 92% (59/64), respectively. Sensitivity and specificity determined using a limited number of fresh tissue specimens were both 100% (2/2). The sensitivity seen with formalin-fixed, paraffin-embedded tissues was 56% (35/62), and the specificity was 100% (19/19). The speed, sensitivity, and specificity of the PCR assay indicate that it is useful for the rapid and accurate detection of zygomycetes.


American Journal of Clinical Pathology | 2007

A multinational, internet-based assessment of observer variability in the diagnosis of serrated colorectal polyps.

Katharina Glatz; Bobbi S. Pritt; Dieter Glatz; Arndt Hartmann; Michael J. O’Brien; Hagen Blaszyk

This Internet-based quiz (http://kathrin.unibas.ch/polyp/) tested the diagnostic variability of 168 pathologists in the diagnosis of 20 colorectal polyps on 3 representative images, including hyperplastic polyps (HPs), traditional serrated adenomas (TSAs), sessile serrated adenomas (SSAs), and tubulovillous adenomas (TVAs). Interobserver variability for each of the 20 lesions was significant and was most pronounced for SSAs. Correct answers were independent of the participants experience with TVAs, HPs, and TSAs. Participants with gastrointestinal subspecialty training and those who had read a reference article on serrated polyps gave a significantly higher percentage of correct answers for SSAs. The nomenclature used for serrated polyps was generally inconsistent. Our results suggest significant shortcomings in the routine H&E diagnosis of serrated colorectal polyps. A diagnostically unifying concept for lesions of the serrated neoplasia pathway, standardization of nomenclature, training of pathologists, and possibly development of ancillary techniques are of paramount importance for accurate patient management.


American Journal of Clinical Pathology | 2007

Mucoid Pseudomonas in Cystic Fibrosis

Bobbi S. Pritt; Linda O'brien; Washington C. Winn

Pseudomonas aeruginosa is a frequent and virulent pulmonary pathogen in patients with cystic fibrosis. If colonization is not prevented, P aeruginosa becomes permanently established and nearly always mutates into a mucoid strain. The alginate-containing matrix of the mucoid strain is thought to allow the formation of protected microcolonies and provide increased resistance to opsonization, phagocytosis, and destruction by antibiotics. As a result, conversion to the mucoid phenotype is associated with a significant increase in morbidity and mortality. In the microbiology laboratory, mucoid P aeruginosa has a distinct Gram stain and culture appearance that can expedite its identification and facilitate appropriate patient management. Important aspects of the mucoid phenotype are reviewed.


Clinical Infectious Diseases | 2013

Executive Summary: A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)a

Ellen Jo Baron; J. Michael Miller; Melvin P. Weinstein; Sandra S. Richter; Richard B. Thomson; Paul P. Bourbeau; Karen C. Carroll; Sue C. Kehl; W. Michael Dunne; Barbara Robinson-Dunn; Joseph D. Schwartzman; Kimberle C. Chapin; James W. Snyder; Betty A. Forbes; Robin Patel; Jon E. Rosenblatt; Bobbi S. Pritt

The critical role of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician and the microbiologists who provide enormous value to the health care team. This document, developed by both laboratory and clinical experts, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. Sections are divided into anatomic systems, including Bloodstream Infections and Infections of the Cardiovascular System, Central Nervous System Infections, Ocular Infections, Soft Tissue Infections of the Head and Neck, Upper Respiratory Infections, Lower Respiratory Tract infections, Infections of the Gastrointestinal Tract, Intraabdominal Infections, Bone and Joint Infections, Urinary Tract Infections, Genital Infections, and Skin and Soft Tissue Infections; or into etiologic agent groups, including Tickborne Infections, Viral Syndromes, and Blood and Tissue Parasite Infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. There is redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a reference to guide physicians in choosing tests that will aid them to diagnose infectious diseases in their patients.

Collaboration


Dive into the Bobbi S. Pritt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blaine A. Mathison

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge