Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bobby P. C. Koeleman is active.

Publication


Featured researches published by Bobby P. C. Koeleman.


Nature Genetics | 2009

15q13.3 microdeletions increase risk of idiopathic generalized epilepsy

Ingo Helbig; Mefford Hc; Andrew J. Sharp; Michel Guipponi; Marco Fichera; Andre Franke; Hiltrud Muhle; Carolien G.F. de Kovel; Carl Baker; Sarah von Spiczak; Katherine L. Kron; Ines Steinich; Ailing A. Kleefuß-Lie; Costin Leu; Verena Gaus; Bettina Schmitz; Karl Martin Klein; Philipp S. Reif; Felix Rosenow; Yvonne G. Weber; Holger Lerche; Fritz Zimprich; Lydia Urak; Karoline Fuchs; Martha Feucht; Pierre Genton; Pierre Thomas; Frank Visscher; Gerrit Jan De Haan; Rikke S. Møller

We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 × 10−8). Most deletion carriers showed common IGE syndromes without other features previously associated with 15q13.3 microdeletions, such as intellectual disability, autism or schizophrenia. Our results indicate that 15q13.3 microdeletions constitute the most prevalent risk factor for common epilepsies identified to date.


Brain | 2010

Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies

Carolien G.F. de Kovel; Holger Trucks; Ingo Helbig; Mefford Hc; Carl Baker; Costin Leu; Christian Kluck; Hiltrud Muhle; Sarah von Spiczak; Philipp Ostertag; Tanja Obermeier; Ailing A. Kleefuß-Lie; Kerstin Hallmann; Michael Steffens; Verena Gaus; Karl Martin Klein; Hajo M. Hamer; Felix Rosenow; Eva H. Brilstra; Dorothée Kasteleijn-Nolst Trenité; Marielle Swinkels; Yvonne G. Weber; Iris Unterberger; Fritz Zimprich; Lydia Urak; Martha Feucht; Karoline Fuchs; Rikke S. Møller; Helle Hjalgrim; Arvid Suls

Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8-13.2; chi(2) = 26.7; 1 degree of freedom; P = 2.4 x 10(-7)). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8-13.2; P = 4.2 x 10(-4)) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3-74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.


Nature Genetics | 2010

Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus

Timothy R. D. J. Radstake; Olga Y. Gorlova; Blanca Rueda; José Martín; Behrooz Z. Alizadeh; Rogelio Palomino-Morales; Marieke J. H. Coenen; Madelon C. Vonk; Alexandre E. Voskuyl; Annemie J. Schuerwegh; Jasper Broen; Piet L. C. M. van Riel; Ruben van 't Slot; Annet Italiaander; Roel A. Ophoff; Gabriela Riemekasten; Nico Hunzelmann; Carmen P. Simeon; Norberto Ortego-Centeno; Miguel A. González-Gay; María Francisca González-Escribano; Paolo Airò; Jaap van Laar; Ariane L. Herrick; Jane Worthington; Roger Hesselstrand; Vanessa Smith; Filip De Keyser; F. Houssiau; Meng May Chee

Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs that leads to profound disability and premature death. To identify new SSc susceptibility loci, we conducted the first genome-wide association study in a population of European ancestry including a total of 2,296 individuals with SSc and 5,171 controls. Analysis of 279,621 autosomal SNPs followed by replication testing in an independent case-control set of European ancestry (2,753 individuals with SSc (cases) and 4,569 controls) identified a new susceptibility locus for systemic sclerosis at CD247 (1q22–23, rs2056626, P = 2.09 × 10−7 in the discovery samples, P = 3.39 × 10−9 in the combined analysis). Additionally, we confirm and firmly establish the role of the MHC (P = 2.31 × 10−18), IRF5 (P = 1.86 × 10−13) and STAT4 (P = 3.37 × 10−9) gene regions as SSc genetic risk factors.


Nature Genetics | 2005

Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect

Alienke J. Monsuur; Paul I. W. de Bakker; Behrooz Z. Alizadeh; Alexandra Zhernakova; Marianna Bevova; Eric Strengman; Lude Franke; Ruben van 't Slot; Martine van Belzen; I.C.M. Lavrijsen; Begoña Diosdado; Mark J. Daly; Chris J. Mulder; M. Luisa Mearin; Jos W. R. Meijer; Gerrit A. Meijer; Erica van Oort; Martin C. Wapenaar; Bobby P. C. Koeleman; Cisca Wijmenga

Celiac disease is probably the best-understood immune-related disorder. The disease presents in the small intestine and results from the interplay between multiple genes and gluten, the triggering environmental factor. Although HLA class II genes explain 40% of the heritable risk, non-HLA genes accounting for most of the familial clustering have not yet been identified. Here we report significant and replicable association (P = 2.1 × 10−6) to a common variant located in intron 28 of the gene myosin IXB (MYO9B), which encodes an unconventional myosin molecule that has a role in actin remodeling of epithelial enterocytes. Individuals homozygous with respect to the at-risk allele have a 2.3-times higher risk of celiac disease (P = 1.55 × 10−5). This result is suggestive of a primary impairment of the intestinal barrier in the etiology of celiac disease, which may explain why immunogenic gluten peptides are able to pass through the epithelial barrier.


American Journal of Human Genetics | 2007

Novel association in chromosome 4q27 region with rheumatoid arthritis and confirmation of type 1 diabetes point to a general risk locus for autoimmune diseases.

Alexandra Zhernakova; Behrooz Z. Alizadeh; Marianna Bevova; Miek A. van Leeuwen; Marieke J. H. Coenen; Barbara Franke; Lude Franke; Marcel D. Posthumus; David A. van Heel; Gerrit van der Steege; Timothy R. D. J. Radstake; Pilar Barrera; Bart O. Roep; Bobby P. C. Koeleman; Cisca Wijmenga

Recently, association of celiac disease with common single-nucleotide polymorphism (SNP) variants in an extensive linkage-disequilibrium block of 480 kb containing the KIAA1109, Tenr, IL2, and IL21 genes has been demonstrated in three independent populations (rs6822844P combined=1.3 x 10(-14)). The KIAA1109/Tenr/IL2/IL21 block corresponds to the Idd3 locus in the nonobese diabetic mouse model of type 1 diabetes (T1D). This block was recently found to be associated with T1D in a genomewide association study, although this finding lacks unequivocal confirmation. We therefore aimed to investigate whether the KIAA1109/Tenr/IL2/IL21 region is involved in susceptibility to multiple autoimmune diseases. We tested SNP rs6822844 for association with disease in 350 T1D-affected and 1,047 rheumatoid arthritis (RA)-affected Dutch patients and in 929 controls. We replicated the association with T1D (P=.0006; OR 0.64 [95% CI 0.50-0.83]), and revealed a similar novel association with RA (P=.0002; OR 0.72 [95% CI 0.61-0.86]). Our results replicate and extend the association found in the KIAA1109/Tenr/IL2/IL21 gene region with autoimmune diseases, implying that this locus is a general risk factor for multiple autoimmune diseases.


Circulation Research | 2004

Association of Human Connexin40 Gene Polymorphisms With Atrial Vulnerability as a Risk Factor for Idiopathic Atrial Fibrillation

Mehran Firouzi; Hemanth Ramanna; Bart Kok; Habo J. Jongsma; Bobby P. C. Koeleman; Pieter A. Doevendans; W. Antoinette Groenewegen; Richard N.W. Hauer

Alterations in distribution, density, and properties of cardiac gap junctions, which mediate electrical coupling of cardiomyocytes, are considered potentially arrhythmogenic. We recently reported 2 linked polymorphisms within regulatory regions of the gene for the atrial gap junction protein connexin40 (Cx40) at nucleotides −44 (G→A) and +71 (A→G), which were associated with familial atrial standstill. The present study examined whether these Cx40 polymorphisms were associated with increased atrial vulnerability in vivo and arrhythmia susceptibility. In 30 subjects without structural heart disease, of whom 14 had documented sporadic paroxysmal atrial fibrillation (AF) and 16 had no AF history, inducibility of AF was assessed using an increasingly aggressive atrial stimulation protocol. Coefficient of spatial dispersion of refractoriness (CD) was calculated. CD was defined as the SD of 12 local mean fibrillatory intervals recorded at right atrial sites, expressed as a percentage of the overall mean fibrillatory interval. Cx40 genotypes were determined by direct DNA sequencing. Subjects were stratified according to normal or increased CD with a cutoff value of 3.0, because CD >3.0 was previously shown to be strongly associated with enhanced atrial vulnerability. The prevalence of the minor Cx40 allele (−44A) and −44AA genotype was significantly higher in subjects with increased dispersion (n=13) compared with those with CD ≤3.0 (n=17; P=0.00046 and P=0.025; odds ratios of 6.7 and 7.4) and a control population (n=253; P=0.00002 and P=3.90×10−7). Carriers of −44AA genotype had a significantly higher CD compared with those with −44GG genotype (6.37±1.21 versus 2.38±0.39, P=0.018), whereas heterozygotes had intermediate values (3.95±1.38, NS). All subjects with increased CD had a history of idiopathic AF compared with only 1 subject with normal CD. The −44A allele and −44AA genotype were significantly more frequent in subjects with prior AF than in those without (P=0.0019 and P=0.031; odds ratios 5.3 and 6.2). This study provides strong evidence linking Cx40 polymorphisms to enhanced atrial vulnerability and increased risk of AF. The full text of this article is available online at http://circres.ahajournals.org.


PLOS Genetics | 2011

Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy

Olga Y. Gorlova; José Martín; Blanca Rueda; Bobby P. C. Koeleman; Jun Ying; María Teruel; Lina Marcela Diaz-Gallo; Jasper Broen; Madelon C. Vonk; Carmen P. Simeon; Behrooz Z. Alizadeh; Marieke J. H. Coenen; Alexandre E. Voskuyl; Annemie J. Schuerwegh; Piet L. C. M. van Riel; Marie Vanthuyne; Ruben van 't Slot; Annet Italiaander; Roel A. Ophoff; Nicolas Hunzelmann; Vicente Fonollosa; Norberto Ortego-Centeno; Miguel A. González-Gay; Francisco J. García-Hernández; María F. González-EscribanoMarí; Paolo Airò; Jacob M van Laar; Jane Worthington; Roger Hesselstrand; Vanessa Smith

The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (lcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32×10−12, OR = 0.75). Also, rs12540874 in GRB10 gene (P = 1.27 × 10−6, OR = 1.15) and rs11047102 in SOX5 gene (P = 1.39×10−7, OR = 1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79×10−61, OR = 2.48), in the HLA-DPA1/B1 loci with ATA (P = 4.57×10−76, OR = 8.84), and in NOTCH4 with ACA P = 8.84×10−21, OR = 0.55) and ATA (P = 1.14×10−8, OR = 0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc.


American Journal of Human Genetics | 2004

Efficient Computation of Significance Levels for Multiple Associations in Large Studies of Correlated Data, Including Genomewide Association Studies

Frank Dudbridge; Bobby P. C. Koeleman

Large exploratory studies, including candidate-gene-association testing, genomewide linkage-disequilibrium scans, and array-expression experiments, are becoming increasingly common. A serious problem for such studies is that statistical power is compromised by the need to control the false-positive rate for a large family of tests. Because multiple true associations are anticipated, methods have been proposed that combine evidence from the most significant tests, as a more powerful alternative to individually adjusted tests. The practical application of these methods is currently limited by a reliance on permutation testing to account for the correlated nature of single-nucleotide polymorphism (SNP)-association data. On a genomewide scale, this is both very time-consuming and impractical for repeated explorations with standard marker panels. Here, we alleviate these problems by fitting analytic distributions to the empirical distribution of combined evidence. We fit extreme-value distributions for fixed lengths of combined evidence and a beta distribution for the most significant length. An initial phase of permutation sampling is required to fit these distributions, but it can be completed more quickly than a simple permutation test and need be done only once for each panel of tests, after which the fitted parameters give a reusable calibration of the panel. Our approach is also a more efficient alternative to a standard permutation test. We demonstrate the accuracy of our approach and compare its efficiency with that of permutation tests on genomewide SNP data released by the International HapMap Consortium. The estimation of analytic distributions for combined evidence will allow these powerful methods to be applied more widely in large exploratory studies.


Neurology | 2015

The phenotypic spectrum of SCN8A encephalopathy.

Jan Larsen; Gemma L. Carvill; Elena Gardella; Gerhard Kluger; Gudrun Schmiedel; Nina Barišić; Christel Depienne; Eva H. Brilstra; Yuan Mang; J. E. K. Nielsen; Martin Kirkpatrick; David Goudie; Rebecca Goldman; Johanna A. Jähn; Birgit Jepsen; Deepak Gill; Miriam Döcker; Saskia Biskup; Jacinta M. McMahon; Bobby P. C. Koeleman; Mandy Harris; Kees P. J. Braun; Carolien G.F. de Kovel; Carla Marini; Nicola Specchio; Tania Djémié; Sarah Weckhuysen; Niels Tommerup; M. Troncoso; L. Troncoso

Objective: SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations. Methods: We used high-throughput sequence analysis of the SCN8A gene in 683 patients with a range of epileptic encephalopathies. In addition, we ascertained cases with SCN8A mutations from other centers. A detailed clinical history was obtained together with a review of EEG and imaging data. Results: Seventeen patients with de novo heterozygous mutations of SCN8A were studied. Seizure onset occurred at a mean age of 5 months (range: 1 day to 18 months); in general, seizures were not triggered by fever. Fifteen of 17 patients had multiple seizure types including focal, tonic, clonic, myoclonic and absence seizures, and epileptic spasms; seizures were refractory to antiepileptic therapy. Development was normal in 12 patients and slowed after seizure onset, often with regression; 5 patients had delayed development from birth. All patients developed intellectual disability, ranging from mild to severe. Motor manifestations were prominent including hypotonia, dystonia, hyperreflexia, and ataxia. EEG findings comprised moderate to severe background slowing with focal or multifocal epileptiform discharges. Conclusion: SCN8A encephalopathy presents in infancy with multiple seizure types including focal seizures and spasms in some cases. Outcome is often poor and includes hypotonia and movement disorders. The majority of mutations arise de novo, although we observed a single case of somatic mosaicism in an unaffected parent.


American Journal of Human Genetics | 2014

Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis

Maureen D. Mayes; Lara Bossini-Castillo; Olga Y. Gorlova; José Martín; Xiaodong Zhou; Wei Chen; Shervin Assassi; Jun Ying; Filemon K. Tan; Frank C. Arnett; John D. Reveille; Sandra G. Guerra; María Teruel; F. Carmona; Peter K. Gregersen; Annette Lee; Elena López-Isac; Eguzkine Ochoa; Patricia Carreira; Carmen P. Simeon; I. Castellví; Miguel A. González-Gay; Alexandra Zhernakova; Leonid Padyukov; Marta E. Alarcón-Riquelme; Cisca Wijmenga; Matthew A. Brown; Lorenzo Beretta; Gabriela Riemekasten; Torsten Witte

In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.

Collaboration


Dive into the Bobby P. C. Koeleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen P. Simeon

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madelon C. Vonk

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Behrooz Z. Alizadeh

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenzo Beretta

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Researchain Logo
Decentralizing Knowledge