Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dick Lindhout is active.

Publication


Featured researches published by Dick Lindhout.


Cell | 1997

Mutations Involving the Transcription Factor CBFA1 Cause Cleidocranial Dysplasia

S Mundlos; Florian Otto; C Mundlos; John B. Mulliken; A.S. Aylsworth; S Albright; Dick Lindhout; W.G Cole; W Henn; J.H.M Knoll; Michael John Owen; R Mertelsmann; Bernhard Zabel; Björn Olsen

Cleidocranial dysplasia (CCD) is an autosomal-dominant condition characterized by hypoplasia/aplasia of clavicles, patent fontanelles, supernumerary teeth, short stature, and other changes in skeletal patterning and growth. In some families, the phenotype segregates with deletions resulting in heterozygous loss of CBFA1, a member of the runt family of transcription factors. In other families, insertion, deletion, and missense mutations lead to translational stop codons in the DNA binding domain or in the C-terminal transactivating region. In-frame expansion of a polyalanine stretch segregates in an affected family with brachydactyly and minor clinical findings of CCD. We conclude that CBFA1 mutations cause CCD and that heterozygous loss of function is sufficient to produce the disorder.


Archive | 1993

Identification and characterization of the tuberous sclerosis gene on chromosome 16

Mark Nellist; Bart Janssen; Phillip T. Brook-Carter; Arjenne L.W. Hesseling-Janssen; Magitha M. Maheshwar; Senno Verhoef; Ans van den Ouweland; Dick Lindhout; Bert Eussen; Isabel Cordeiro; Heloisa Santos; Dicky Halley; Julian Roy Sampson; Christopher J. Ward; Belén Peral; Sandra Thomas; Jim R. Hughes; Peter C. Harris; Jeroen H. Roelfsema; Jasper J. Saris; Lia Spruit; Dorien J.M. Peters; Johannes G. Dauwerse; Martijn H. Bruening

Tuberous sclerosis (TSC) is an autosomal dominant multisystem disorder with loci assigned to chromosomes 9 and 16. Using pulsed-field gel electrophoresis (PFGE), we identified five TSC-associated deletions at 16p13.3. These were mapped to a 120 kb region that was cloned in cosmids and from which four genes were isolated. One gene, designated TSC2, was interrupted by all five PFGE deletions, and closer examination revealed several intragenic mutations, including one de novo deletion. In this case, Northern blot analysis identified a shortened transcript, while reduced expression was observed in another TSC family, confirming TSC2 as the chromosome 16 TSC gene. The 5.5 kb TSC2 transcript is widely expressed, and its protein product, tuberin, has a region of homology to the GTPase-activating protein GAP3.Tuberous sclerosis (TSC) is an autosomal dominant multisystem disorder with loci assigned to chromosomes 9 and 16. Using pulsed-field gel electrophoresis (PFGE), we identified five TSC-associated deletions at 16p 13.3. These were mapped to a 120 kb region that was cloned in cosmids and from which four genes were isolated. One gene, designated TSC2, was interrupted by all five PFGE deletions, and closer examination revealed several intragenic mutations, including one de novo deletion. In this case, Northern blot analysis identified a shortened transcript, while reduced expression was observed in another TSC family, confirming TSC2 as the chromosome 16 TSC gene. The 5.5 kb TSC2 transcript is widely expressed, and its protein product, tuberin, has a region of homology to the GTPaseactivating protein GAP3.


Nature Genetics | 2009

15q13.3 microdeletions increase risk of idiopathic generalized epilepsy

Ingo Helbig; Mefford Hc; Andrew J. Sharp; Michel Guipponi; Marco Fichera; Andre Franke; Hiltrud Muhle; Carolien G.F. de Kovel; Carl Baker; Sarah von Spiczak; Katherine L. Kron; Ines Steinich; Ailing A. Kleefuß-Lie; Costin Leu; Verena Gaus; Bettina Schmitz; Karl Martin Klein; Philipp S. Reif; Felix Rosenow; Yvonne G. Weber; Holger Lerche; Fritz Zimprich; Lydia Urak; Karoline Fuchs; Martha Feucht; Pierre Genton; Pierre Thomas; Frank Visscher; Gerrit Jan De Haan; Rikke S. Møller

We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 × 10−8). Most deletion carriers showed common IGE syndromes without other features previously associated with 15q13.3 microdeletions, such as intellectual disability, autism or schizophrenia. Our results indicate that 15q13.3 microdeletions constitute the most prevalent risk factor for common epilepsies identified to date.


Lancet Neurology | 2011

Dose-dependent risk of malformations with antiepileptic drugs: an analysis of data from the EURAP epilepsy and pregnancy registry

Torbjörn Tomson; Dina Battino; Erminio Bonizzoni; John Craig; Dick Lindhout; Anne Sabers; Emilio Perucca; F. J. E. Vajda

BACKGROUND Prenatal exposure to antiepileptic drugs is associated with a greater risk of major congenital malformations, but there is inadequate information on the comparative teratogenicity of individual antiepileptic drugs and the association with dose. We aimed to establish the risks of major congenital malformations after monotherapy exposure to four major antiepileptic drugs at different doses. METHODS The EURAP epilepsy and pregnancy registry is an observational cohort study representing a collaboration of physicians from 42 countries. We prospectively monitored pregnancies exposed to monotherapy with different doses of four common drugs: carbamazepine, lamotrigine, valproic acid, or phenobarbital. Our primary endpoint was the rate of major congenital malformations detected up to 12 months after birth. We assessed pregnancy outcomes according to dose at the time of conception irrespective of subsequent dose changes. FINDINGS After excluding pregnancies that ended in spontaneous abortions or chromosomal or genetic abnormalities, those in which the women had treatment changes in the first trimester, and those involving other diseases or treatments that could affect fetal outcome, we assessed rates of major congenital malformations in 1402 pregnancies exposed to carbamazepine, 1280 on lamotrigine, 1010 on valproic acid, and 217 on phenobarbital. An increase in malformation rates with increasing dose at the time of conception was recorded for all drugs. Multivariable analysis including ten covariates in addition to treatment with antiepileptic drugs showed that the risk of malformations was greater with a parental history of major congenital malformations (odds ratio 4·4, 95% CI 2·06-9·23). We noted the lowest rates of malformation with less than 300 mg per day lamotrigine (2·0% [17 events], 95% CI 1·19-3·24) and less than 400 mg per day carbamazepine (3·4% [5 events], 95% CI 1·11-7·71). Compared with lamotrigine monotherapy at doses less than 300 mg per day, risks of malformation were significantly higher with valproic acid and phenobarbital at all investigated doses, and with carbamazepine at doses greater than 400 mg per day. INTERPRETATION The risk of major congenital malformations is influenced not only by type of antiepileptic drug, but also by dose and other variables, which should be taken into account in the management of epilepsy in women of childbearing potential. FUNDING Eisai, GlaxoSmithKline, Janssen-Cilag, Novartis, Pfizer, Sanofi-Aventis, UCB, Netherlands Epilepsy Foundation, Stockholm County Council, and ALF.


Nature Genetics | 1999

Familial endometrial cancer in female carriers of MSH6 germline mutations.

Juul T. Wijnen; W. de Leeuw; Hans F. A. Vasen; H. van der Klift; Pål Møller; Astrid Stormorken; Hanne Meijers-Heijboer; Dick Lindhout; Fred H. Menko; S Vossen; Gabriela Möslein; Carli M. J. Tops; A Brocker-Vriends; Ying Wu; Rmw Hofstra; Rolf H. Sijmons; Cees J. Cornelisse; Hans Morreau; R Fodde

Hereditary non-polyposis colorectal cancer (HNPCC) is a common autosomal dominant condition characterized by early onset colorectal cancer as well as other tumour types at different anatomical sites1. HNPCC tumours often display a high level of genomic instability, characterized by changes in repeat numbers of simple repetitive sequences (microsatellite instability, MSI), which reflects the malfunction of the DNA mismatch repair machinery2, 3. Accordingly, HNPCC was shown to be caused by germline mutations in the DNA mismatch repair genes (MMR) MSH2, MLH1, PMS1, PMS2 and MSH6 (refs 3, 4, 5, 6). So far, more than 220 predisposing mutations have been identified, most in MSH2 and MLH1 and in families complying with the clinical Amsterdam criteria3, 7, 8 (AMS+). Many HNPCC families, however, do not fully comply with these criteria, and in most cases the causative mutations are unknown.


The New England Journal of Medicine | 1998

Clinical findings with implications for genetic testing in families with clustering of colorectal cancer.

Juul T. Wijnen; Hans F. A. Vasen; P. Meera Khan; Aeilko H. Zwinderman; Heleen M. van der Klift; Adri Mulder; Carli M. J. Tops; Pål Møller; Riccardo Fodde; Fred H. Menko; Babs G. Taal; Fokko M. Nagengast; Han G. Brunner; Jan H. Kleibeuker; Rolf H. Sijmons; G. Griffioen; Annette H. J. T. Bröcker-Vriends; Egbert Bakker; Inge van Leeuwen-Cornelisse; Anne Meijers-Heijboer; Dick Lindhout; Martijn H. Breuning; Jan G. Post; Cees Schaap; Jaran Apold; Ketil Heimdal; Lucio Bertario; Marie Luise Bisgaard; Petr Goetz

BACKGROUND Germ-line mutations in DNA mismatch-repair genes (MSH2, MLH1, PMS1, PMS2, and MSH6) cause susceptibility to hereditary nonpolyposis colorectal cancer. We assessed the prevalence of MSH2 and MLH1 mutations in families suspected of having hereditary nonpolyposis colorectal cancer and evaluated whether clinical findings can predict the outcome of genetic testing. METHODS We used denaturing gradient gel electrophoresis to identify MSH2 and MLH1 mutations in 184 kindreds with familial clustering of colorectal cancer or other cancers associated with hereditary nonpolyposis colorectal cancer. Information on the site of cancer, the age at diagnosis, and the number of affected family members was obtained from all families. RESULTS Mutations of MSH2 or MLH1 were found in 47 of the 184 kindreds (26 percent). Clinical factors associated with these mutations were early age at diagnosis of colorectal cancer, the occurrence in the kindred of endometrial cancer or tumors of the small intestine, a higher number of family members with colorectal or endometrial cancer, the presence of multiple colorectal cancers or both colorectal and endometrial cancers in a single family member, and fulfillment of the Amsterdam criteria for the diagnosis of hereditary nonpolyposis colorectal cancer (at least three family members in two or more successive generations must have colorectal cancer, one of whom is a first-degree relative of the other two; cancer must be diagnosed before the age of 50 in at least one family member; and familial adenomatous polyposis must be ruled out). Multivariate analysis showed that a younger age at diagnosis of colorectal cancer, fulfillment of the Amsterdam criteria, and the presence of endometrial cancer in the kindred were independent predictors of germ-line mutations of MSH2 or MLH1. These results were used to devise a logistic model for estimating the likelihood of a mutation in MSH2 and MLH1. CONCLUSIONS Assessment of clinical findings can improve the rate of detection of mutations of DNA mismatch-repair genes in families suspected of having hereditary nonpolyposis colorectal cancer.


Epilepsia | 1997

Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European prospective study of human teratogenesis associated with maternal epilepsy.

E. B. Samrén; C. M. Duijn; S. Koch; V. K. Hiilesmaa; H. Klepel; A. H. Bardy; G. Beck Mannagetta; A. W. Deichl; Eija Gaily; I. L. Granström; H. Meinardi; D. E. Grobbee; Albert Hofman; D. Janz; Dick Lindhout

Summary: Purpose: To quantify the risks of intrauterine antiepileptic drug (AED) exposure in monotherapy and poly‐therapy.


Brain | 2010

Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies

Carolien G.F. de Kovel; Holger Trucks; Ingo Helbig; Mefford Hc; Carl Baker; Costin Leu; Christian Kluck; Hiltrud Muhle; Sarah von Spiczak; Philipp Ostertag; Tanja Obermeier; Ailing A. Kleefuß-Lie; Kerstin Hallmann; Michael Steffens; Verena Gaus; Karl Martin Klein; Hajo M. Hamer; Felix Rosenow; Eva H. Brilstra; Dorothée Kasteleijn-Nolst Trenité; Marielle Swinkels; Yvonne G. Weber; Iris Unterberger; Fritz Zimprich; Lydia Urak; Martha Feucht; Karoline Fuchs; Rikke S. Møller; Helle Hjalgrim; Arvid Suls

Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8-13.2; chi(2) = 26.7; 1 degree of freedom; P = 2.4 x 10(-7)). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8-13.2; P = 4.2 x 10(-4)) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3-74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.


Annals of Neurology | 1999

Antiepileptic drug regimens and major congenital abnormalities in the offspring

E. Bettina Samrén; Cornelia M. van Duijn; G. C. M. Lieve Christiaens; Albert Hofman; Dick Lindhout

To assess the risk of major congenital abnormalities associated with specific antiepileptic drug regimens, a large retrospective cohort study was performed. The study comprised 1,411 children born between 1972 and 1992 in four provinces in the Netherlands who were born to mothers with epilepsy and using antiepileptic drugs during the first trimester of pregnancy, and 2,000 nonepileptic matched controls. We found significantly increased risks of major congenital abnormalities for carbamazepine and valproate monotherapy, with evidence for a significant dose–response relationship for valproate. The risk of major congenital abnormalities was nonsignificantly increased for phenobarbital monotherapy when caffeine comedication was excluded, but a significant increase in risk was found when caffeine was included. Phenytoin monotherapy was not associated with an increased risk of major congenital abnormalities. Regarding polytherapy regimens, increased risks were found for several antiepileptic drug combinations. Clonazepam, in combination with other antiepileptic drugs, showed a significantly increased relative risk. Furthermore, there were significantly increased relative risks for the combination of carbamazepine and valproate and the combination of phenobarbital and caffeine with other antiepileptic drugs. This study shows that most antiepileptic drug regimens were associated with an increased risk of major congenital abnormalities in the offspring, in particular valproate (dose–response relationship) and carbamazepine monotherapy, benzodiazepines in polytherapy, and caffeine comedication in combinations with phenobarbital.


Journal of Medical Genetics | 2005

Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia

Tom G. W. Letteboer; J. J. Mager; R. J. Snijder; B P C Koeleman; Dick Lindhout; J K Ploos van Amstel; Cornelius J.J. Westermann

Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterised by vascular malformations in multiple organ systems, resulting in mucocutaneous telangiectases and arteriovenous malformations predominantly in the lungs (pulmonary arteriovenous malformation; PAVM), brain (cerebral arteriovenous malformation; CAVM), and liver (hepatic arteriovenous malformation; HAVM). Mutations in the ENG and ALK-1 genes lead to HHT1 and HHT2 respectively. In this study, a genotype-phenotype analysis was performed. A uniform and well classified large group of HHT patients and their family members were screened for HHT manifestations. Groups of patients with a clinically confirmed diagnosis and/or genetically established diagnosis (HHT1 or HHT2) were compared. The frequency of PAVM, CAVM, HAVM, and gastrointestinal telangiectases were determined to establish the genotype-phenotype relationship. The analysis revealed differences between HHT1 and HHT2 and within HHT1 and HHT2 between men and women. PAVMs and CAVMs occur more often in HHT1, whereas HAVMs are more frequent in HHT2. Furthermore, there is a higher prevalence of PAVM in women compared with men in HHT1. In HHT1 and HHT2, there is a higher frequency of HAVM in women. HHT1 has a distinct, more severe phenotype than HHT2. There is a difference in the presence of symptoms between men and women. With these data, genetic counselling can be given more accurately when the family mutation is known.

Collaboration


Dive into the Dick Lindhout's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerrit-Jan de Haan

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dicky Halley

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Senno Verhoef

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge