Bodo Linz
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bodo Linz.
Nature | 2007
Bodo Linz; Francois Balloux; Yoshan Moodley; Andrea Manica; Hua Liu; Philippe Roumagnac; Daniel Falush; Christiana Stamer; Franck Prugnolle; Schalk Van der Merwe; Yoshio Yamaoka; David Y. Graham; Emilio Perez-Trallero; Torkel Wadstrom; Sebastian Suerbaum; Mark Achtman
Infection of the stomach by Helicobacter pylori is ubiquitous among humans. However, although H. pylori strains from different geographic areas are associated with clear phylogeographic differentiation, the age of an association between these bacteria with humans remains highly controversial. Here we show, using sequences from a large data set of bacterial strains that, as in humans, genetic diversity in H. pylori decreases with geographic distance from east Africa, the cradle of modern humans. We also observe similar clines of genetic isolation by distance (IBD) for both H. pylori and its human host at a worldwide scale. Like humans, simulations indicate that H. pylori seems to have spread from east Africa around 58,000 yr ago. Even at more restricted geographic scales, where IBD tends to become blurred, principal component clines in H. pylori from Europe strongly resemble the classical clines for Europeans described by Cavalli-Sforza and colleagues. Taken together, our results establish that anatomically modern humans were already infected by H. pylori before their migrations from Africa and demonstrate that H. pylori has remained intimately associated with their human host populations ever since.
Infection, Genetics and Evolution | 2002
Claire Kidgell; Ulrike Reichard; John Wain; Bodo Linz; Mia Torpdahl; Gordon Dougan; Mark Achtman
A global collection of 26 isolates of Salmonella typhi was investigated by sequencing a total of 3336 bp in seven housekeeping genes. Only three polymorphic sites were found and the isolates fell into four sequence types. These results show that S. typhi is a recent clone whose last common ancestor existed so recently that multiple mutations have not yet accumulated. Based on molecular clock rates for the accumulation of synonymous polymorphisms, we estimate that the last common ancestor of S. typhi existed 15,000-150,000 years ago, during the human hunter-gatherer phase and prior to the development of agriculture and the domestication of animals.
Science | 2009
Yoshan Moodley; Bodo Linz; Yoshio Yamaoka; Helen M. Windsor; Sebastien Breurec; Jeng-Yih Wu; Ayas Maady; Steffie Bernhöft; Jean-Michel Thiberge; Suparat Phuanukoonnon; Gangolf Jobb; Peter Siba; David Y. Graham; Barry J. Marshall; Mark Achtman
Two prehistoric migrations peopled the Pacific. One reached New Guinea and Australia, and a second, more recent, migration extended through Melanesia and from there to the Polynesian islands. These migrations were accompanied by two distinct populations of the specific human pathogen Helicobacter pylori, called hpSahul and hspMaori, respectively. hpSahul split from Asian populations of H. pylori 31,000 to 37,000 years ago, in concordance with archaeological history. The hpSahul populations in New Guinea and Australia have diverged sufficiently to indicate that they have remained isolated for the past 23,000 to 32,000 years. The second human expansion from Taiwan 5000 years ago dispersed one of several subgroups of the Austronesian language family along with one of several hspMaori clades into Melanesia and Polynesia, where both language and parasite have continued to diverge.
PLOS Pathogens | 2012
Yoshan Moodley; Bodo Linz; Robert P. Bond; Martin J. Nieuwoudt; Himla Soodyall; Carina Maria Schlebusch; Steffi Bernhöft; James Hale; Sebastian Suerbaum; Lawrence Mugisha; Schalk Van der Merwe; Mark Achtman
When modern humans left Africa ca. 60,000 years ago (60 kya), they were already infected with Helicobacter pylori, and these bacteria have subsequently diversified in parallel with their human hosts. But how long were humans infected by H. pylori prior to the out-of-Africa event? Did this co-evolution predate the emergence of modern humans, spanning the species divide? To answer these questions, we investigated the diversity of H. pylori in Africa, where both humans and H. pylori originated. Three distinct H. pylori populations are native to Africa: hpNEAfrica in Afro-Asiatic and Nilo-Saharan speakers, hpAfrica1 in Niger-Congo speakers and hpAfrica2 in South Africa. Rather than representing a sustained co-evolution over millions of years, we find that the coalescent for all H. pylori plus its closest relative H. acinonychis dates to 88–116 kya. At that time the phylogeny split into two primary super-lineages, one of which is associated with the former hunter-gatherers in southern Africa known as the San. H. acinonychis, which infects large felines, resulted from a later host jump from the San, 43–56 kya. These dating estimates, together with striking phylogenetic and quantitative human-bacterial similarities show that H. pylori is approximately as old as are anatomically modern humans. They also suggest that H. pylori may have been acquired via a single host jump from an unknown, non-human host. We also find evidence for a second Out of Africa migration in the last 52,000 years, because hpEurope is a hybrid population between hpAsia2 and hpNEAfrica, the latter of which arose in northeast Africa 36–52 kya, after the Out of Africa migrations around 60 kya.
Molecular Microbiology | 2000
Bodo Linz; Martin Schenker; Peixuan Zhu; Mark Achtman
Natural sequence variation was investigated among serogroup A subgroup IV‐1 Neisseria meningitidis isolated from diseased patients and healthy carriers in The Gambia, West Africa. The frequencies of DNA import were analysed by sequencing fragments of four linked genes encoding the immunogenic outer membrane proteins TbpB (transferrin binding protein B) and OpaA (an adhesin) plus two housekeeping enzymes. Seventeen foreign tbpB alleles were independently imported into the 98 strains tested, apparently due to immune selection. The median size of the imported DNA fragments was 5 kb, resulting in the occasional concurrent import of linked housekeeping genes by hitchhiking. Sequences of tbpB from other strains of N. meningitidis as well as commensal Neisseria lactamica and Neisseria spp. isolated from the same geographical area revealed that these species share a common tbpB gene pool and identified several examples of interspecific genetic exchange. These observations indicate that recombination can be more frequent between related species than within a species and indicate that effective vaccination against serogroup B meningococcal disease may be difficult to achieve.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Peixuan Zhu; Arie van der Ende; Daniel Falush; Norbert Brieske; Giovanna Morelli; Bodo Linz; Tanja Popovic; Ilse G. A. Schuurman; Richard A. Adegbola; Kerstin Zurth; Sebastien Gagneux; Alexander E. Platonov; Jean-Yves Riou; Dominique A. Caugant; Pierre Nicolas; Mark Achtman
The genetic variability at six polymorphic loci was examined within a global collection of 502 isolates of subgroup III, serogroup A Neisseria meningitidis. Nine “genoclouds” were identified, consisting of genotypes that were isolated repeatedly plus 48 descendent genotypes that were isolated rarely. These genoclouds have caused three pandemic waves of disease since the mid-1960s, the most recent of which was imported from East Asia to Europe and Africa in the mid-1990s. Many of the genotypes are escape variants, resulting from positive selection that we attribute to herd immunity. Despite positive selection, most escape variants are less fit than their parents and are lost because of competition and bottlenecks during spread from country to country. Competition between fit genotypes results in dramatic changes in population composition over short time periods.
PLOS Genetics | 2010
Patrick Olbermann; Christine Josenhans; Yoshan Moodley; Markus Uhr; Christiana Stamer; Marc Vauterin; Sebastian Suerbaum; Mark Achtman; Bodo Linz
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.
Science | 2016
Frank Maixner; Ben Krause-Kyora; Dmitrij Turaev; Alexander Herbig; Michael R. Hoopmann; Janice L. Hallows; Ulrike Kusebauch; Eduard Egarter Vigl; Peter Malfertheiner; Francis Mégraud; Niall O’Sullivan; Giovanna Cipollini; Valentina Coia; Marco Samadelli; Lars Engstrand; Bodo Linz; Robert L. Moritz; Rudolf Grimm; Johannes Krause; Almut Nebel; Yoshan Moodley; Thomas Rattei; Albert Zink
Stomach ache for a European mummy Five thousand years ago in the European Alps, a man was shot by an arrow, then clubbed to death. His body was subsequently mummified by ice until glacier retreat exhumed him in 1991. Subsequently, this ancient corpse has provided a trove of intriguing information about copper-age Europeans. Now, Maixner et al. have identified the human pathogen Helicobacter pylori within the mummys stomach contents. The strain the “Iceman” hosted appears to most closely resemble pathogenic Asian strains found today in Central and Southern Asia. Science, this issue p. 162 Mummified remains from the Alps reveal an unexpected history for a human pathogen. The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has dispersed globally with its human host, resulting in a distinct phylogeographic pattern that can be used to reconstruct both recent and ancient human migrations. The extant European population of H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different hypotheses about when and where the hybridization took place, reflecting the complex demographic history of Europeans. Here, we present a 5300-year-old H. pylori genome from a European Copper Age glacier mummy. The “Iceman” H. pylori is a nearly pure representative of the bacterial population of Asian origin that existed in Europe before hybridization, suggesting that the African population arrived in Europe within the past few thousand years.
Journal of Bacteriology | 2006
Joanna Andrzejewska; Sae Kyung Lee; Patrick Olbermann; Nina Lotzing; Elena Katzowitsch; Bodo Linz; Mark Achtman; Clarence I. Kado; Sebastian Suerbaum; Christine Josenhans
The Helicobacter pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) involved in host interaction and pathogenicity. Previously, seven cag PAI proteins were identified as homologs of Agrobacterium tumefaciens Vir proteins, which form a paradigm T4SS. The T pilus composed of the processed VirB2 pilin is an external structural part of the A. tumefaciens T4SS. In H. pylori, cag-dependent assembly of pili has not been observed so far, nor has a pilin (VirB2) ortholog been characterized. We have here identified, using a motif-based search, an H. pylori cag island protein (HP0546) that possesses sequence and predicted structural similarities to VirB2-like pilins of other T4SSs. The HP0546 protein displays interstrain variability in its terminal domains. HP0546 was expressed as a FLAG-tagged fusion protein in Escherichia coli, A. tumefaciens, and H. pylori and was detected as either two or three bands of different molecular masses in the insoluble fraction, indicating protein processing. As reported previously, isogenic H. pylori mutants in the putative cag pilin gene had reduced abilities to induce cag PAI-dependent interleukin-8 secretion in gastric epithelial cells. Fractionation analysis of H. pylori, using a specific antiserum raised against an N-terminal HP0546 peptide, showed that the protein is partially surface exposed and that its surface localization depended upon an intact cag system. By immunoelectron microscopy, HP0546 was localized in surface appendages, with surface exposure of an N-terminal epitope. Pronounced strain-to-strain variability of this predicted surface-exposed part of HP0546 indicates a strong selective pressure for variation in vivo.
PLOS ONE | 2008
Maria Gloria Dominguez-Bello; María Pérez; Maria Cátira Bortolini; Francisco M. Salzano; Luis R. Pericchi; Orlisbeth Zambrano-Guzmán; Bodo Linz
We studied the diversity of bacteria and host in the H. pylori-human model. The human indigenous bacterium H. pylori diverged along with humans, into African, European, Asian and Amerindian groups. Of these, Amerindians have the least genetic diversity. Since niche diversity widens the sets of resources for colonizing species, we predicted that the Amerindian H. pylori strains would be the least diverse. We analyzed the multilocus sequence (7 housekeeping genes) of 131 strains: 19 cultured from Africans, 36 from Spanish, 11 from Koreans, 43 from Amerindians and 22 from South American Mestizos. We found that all strains that had been cultured from Africans were African strains (hpAfrica1), all from Spanish were European (hpEurope) and all from Koreans were hspEAsia but that Amerindians and Mestizos carried mixed strains: hspAmerind and hpEurope strains had been cultured from Amerindians and hpEurope and hpAfrica1 were cultured from Mestizos. The least genetically diverse H. pylori strains were hspAmerind. Strains hpEurope were the most diverse and showed remarkable multilocus sequence mosaicism (indicating recombination). The lower genetic structure in hpEurope strains is consistent with colonization of a diversity of hosts. If diversity is important for the success of H. pylori, then the low diversity of Amerindian strains might be linked to their apparent tendency to disappear. This suggests that Amerindian strains may lack the needed diversity to survive the diversity brought by non-Amerindian hosts.