Bogdan J. Wlodarczyk
University of Texas at Austin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bogdan J. Wlodarczyk.
Expert Review of Neurotherapeutics | 2010
Denise S. Hill; Bogdan J. Wlodarczyk; Ana M. Palacios; Richard H. Finnell
Many antiepileptic drugs (AEDs) have therapeutic applications that extend beyond epilepsy to include neuropathic pain, migraine headaches and psychiatric disorders. The risk of some AEDs has been clearly established, but for newer drugs, small sample sizes and polytherapy exposures preclude a conclusive determination of their teratogenic potential. Most women with epilepsy will require AED therapy throughout their entire pregnancy to control seizures; the vast majority of pregnancies in women with epilepsy have positive outcomes. A conservative estimate suggests that AED monotherapy doubles, and polytherapy triples, the risk for major congenital malformations. Furthermore, while evidence is still accruing, recent investigations suggest that exposure to select AEDs results in altered cognitive function later in development. There is no evidence to suggest that additional folic acid supplementation ameliorates the increased risk of congenital malformations conferred by in utero AED exposure.
American Journal of Medical Genetics Part A | 2012
Bogdan J. Wlodarczyk; Ana M. Palacios; Timothy M. George; Richard H. Finnell
The treatment of epilepsy in women of reproductive age remains a clinical challenge. While most women with epilepsy (WWE) require anticonvulsant drugs for adequate control of their seizures, the teratogenicity associated with some antiepileptic drugs (AEDs) is a risk that needs to be carefully addressed. Antiepileptic medications are also used to treat an ever broadening range of medical conditions such as bipolar disorder, migraine prophylaxis, cancer, and neuropathic pain. Despite the fact that the majority of pregnancies of WWE who are receiving pharmacological treatment are normal, studies have demonstrated that the risk of having a pregnancy complicated by a major congenital malformation is doubled when comparing the risk of untreated pregnancies. Furthermore, when AEDs are used in polytherapy regimens, the risk is tripled, especially when valproic acid (VPA) is included. However, it should be noted that the risks are specific for each anticonvulsant drug. Some investigations have suggested that the risk of teratogenicity is increased in a dose‐dependent manner. More recent studies have reported that in utero exposure to AEDs can have detrimental effects on the cognitive functions and language skills in later stages of life. In fact, the FDA just issued a safety announcement on the impact of VPA on cognition (Safety Announcement 6‐30‐2011). The purpose of this document is to review the most commonly used compounds in the treatment of WWE, and to provide information on the latest experimental and human epidemiological studies of the effects of AEDs in the exposed embryos.
Journal of Nutrition | 2002
Richard H. Finnell; Ofer Spiegelstein; Bogdan J. Wlodarczyk; Aleata A. Triplett; Igor P. Pogribny; Stepan Melnyk; Jill James
Periconceptional folic acid supplementation has been shown to prevent up to 70% of neural tube and other birth defects in humans; however, the mechanism is still unknown. In this study, we tested whether defective intracellular folate transport, as achieved by inactivation of the murine folate-binding protein 1 (Folbp1), affects global DNA methylation in the liver and brain from gestational day (GD) 15 embryos. Complete Folbp1 inactivation is embryolethal but can be reversed by maternal folinic acid (FA) supplementation, and thus we also tested the effect of FA supplementation on DNA methylation in Folbp1 fetuses. Overall, the extent of global DNA methylation seems to be similar across all genotypes in unsupplemented control Folbp1 mice; however, explicit conclusions regarding Folbp1(-/-) fetuses were not possible because only a single living unsupplemented fetus was viable at GD 15. FA supplementation induced global DNA hypomethylation across all genotypes. FA-induced hypomethylation is most likely due to its ability to inhibit the enzyme glycine hydroxymethyltransferase, thereby inhibiting the homocysteine remethylation cycle necessary to regenerate S-adenosylmethionine, the methyl donor for DNA methyltransferases. Our hypothesis was that due to defective folate transport in Folbp1(-/-) embryos and fetuses, DNA would be hypomethylated, thereby altering the temporal expression of critical genes necessary for normal embryonic development. However, these results suggest that an extended examination of changes in DNA methylation prior to GD 15 is required to unequivocally prove or disprove the hypothesis.
Annals of the New York Academy of Sciences | 2006
Richard H. Finnell; Janee Gelineau-van Waes; Gregory D. Bennett; Robert C. Barber; Bogdan J. Wlodarczyk; Gary M. Shaw; Edward J. Lammer; Jorge A. Piedrahita; James Eberwine
Abstract: Neural tube defects (NTDs) are among the most common of all human congenital defects, with multifactorial etiologies comprising both environmental and genetic components. Several murine model systems have been developed in an effort to elucidate genetic factors regulating expression of NTDs. Strain‐dependent differences in susceptibility to teratogenic insults and altered patterns of gene expression observed within the neuroepithelium of affected embryos support the hypothesis that subtle genetic changes can result in NTDs. Since several affected genes are folate‐regulated, transgenic knockout mice lacking a functional folate receptor were developed. Nullizygous embryos died in utero with significant morphological defects, supporting the critical role of folic acid in early embryogenesis. While epidemiological studies have not established an association between polymorphisms in the human folate receptor gene and NTDs, it is known that folate supplementation reduces infant NTD risk. Continued efforts are therefore necessary to reveal the mechanism by which folate works and the nature of the gene(s) responsible for human NTDs.
Developmental Cell | 2013
Jacqueline M. Tabler; William B. Barrell; Heather L. Szabo-Rogers; Chris Healy; Yvonne Yeung; Elisa Gomez Perdiguero; Christian Schulz; Basil Z. Yannakoudakis; Aida Mesbahi; Bogdan J. Wlodarczyk; Frederic Geissmann; Richard H. Finnell; John B. Wallingford; Karen J. Liu
Summary Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2008
Denise S. Hill; Bogdan J. Wlodarczyk; Richard H. Finnell
BACKGROUND The second most common of all structural birth defects, neural tube defects (NTDs), affect approximately 2.6/1,000 births worldwide, and 1/1,000 births in the United States. Of the many environmental agents suspected of being teratogenic, arsenic (As) is capable of inducing NTDs in laboratory animals. METHODS We evaluated the teratogenicity of oral exposure on embryonic day (E) 7.5 and E:8.5 to As 4.8, 9.6, or 14.4 mg/kg (as sodium arsenate) in an inbred mouse strain, LM/Bc/Fnn, that does not exhibit spontaneous neural tube malformations. Control and arsenic-treated dams (20 per treatment group) were weighed daily, and evaluated for signs of maternal toxicity. Fetuses were evaluated for soft tissue and skeletal malformations. RESULTS There was no maternal toxicity as evidenced by losses in maternal body weight following As treatment. However, liver weights were lower in all As-treated groups, suggesting hepatotoxicity due to As exposure. The number of litters affected with an NTD (exencephaly) in each treatment group was: 0, 1, 5, and 9 for control, As 4.8, 9.6, or 14.4, respectively, which exhibited a positive linear trend. There was evidence for trends between As dose and the number of litters displaying vertebral (p<0.001) and calvarial (p<0.01) abnormalities, components of the axial skeleton. Mean fetal weight of all As-treated groups was significantly less than in control. DISCUSSION In our model, maternal oral treatment with As induced NTDs. It also significantly increased the frequency of axial skeletal anomalies in the offspring exposed in utero, and reduced mean fetal weight, without evidence of maternal toxicity.
Journal of Medicinal Chemistry | 2009
Neta Pessah; Meir Bialer; Bogdan J. Wlodarczyk; Richard H. Finnell; Boris Yagen
2,2,3,3-Tetramethylcyclopropanecarboxylic acid (TMCA, 4) is a cyclic analogue of the antiepileptic drug (AED) valproic acid (VPA) (1). alpha-F, alpha-Cl, alpha-Br, and alpha-methyl derivatives of 4 and their amides were synthesized and tested in rodent models for anticonvulsant potency and AED-induced teratogenicity. In the anticonvulsant rat-maximal electroshock (MES) and subcutaneous metrazol (scMet) tests, alpha-Cl-TMCD (17) had ED(50) values of 97 and 27 mg/kg, respectively. alpha-F-TMCD (11) was 120 times more potent than VPA in the rat-scMet test (ED(50) = 6 mg/kg) and had a protective index (PI = TD(50)/ED(50)) of 20. In the 6 Hz psychomotor mouse model 11 had ED(50) values of 57 mg/kg (32 mA) and 59 mg/kg (44 mA). The ED(50) values of 11 in the hippocampal-kindled rat model and in the pilocarpine-induced-status rat model were 30 and 23 mg/kg, respectively. Unlike 1, 11 was nonteratogenic in mice. This novel compound has the potential to become a candidate for development as a new potent and safe antiepileptic and CNS drug.
Developmental Genetics | 1996
Bogdan J. Wlodarczyk; Gregory D. Bennett; James A. Calvin; Johanna C. Craig; Richard H. Finnell
We examined the morphological and molecular consequences of acute in utero exposure to teratogenic concentrations of arsenate. The treatment produced a dose-related increase in neural tube defects, along with a significant alteration in the pattern of gene expression for several transcription factors (creb, Hox 3.1, Pax3, and Emx-1) that were examined using in situ transcription and antisense RNA amplification procedures. On gestational day 9:0, there was a significant delay in the embryos progression through neural tube closure, accompanied by a significant downregulation of Hox 3.1 expression and a significant upregulation of Pax3, Emx-1, and creb. As both Hox 3.1 and Pax3 serve to regulate N-CAM expression, it is possible that abnormalities associated with N-CAM may compromise neural crest cell migration and normal neural tube closure.
Toxicology and Applied Pharmacology | 2009
Denise S. Hill; Bogdan J. Wlodarczyk; Laura E. Mitchell; Richard H. Finnell
BACKGROUND Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. OBJECTIVES We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenics teratogenicity in early neurodevelopment. METHODS We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), l-methionine (L-Met), N-tert-Butyl-alpha-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenates effects. RESULTS Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p=0.0260). Arsenate caused NTDs (100%, p<0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. CONCLUSIONS IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulins success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.
PLOS ONE | 2011
Zichao Zhang; Bogdan J. Wlodarczyk; Karen Niederreither; Shankar R. Venugopalan; Sergio Florez; Richard H. Finnell; Brad A. Amendt
The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz−/− mice. We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh) and Wnt/β-catenin signaling during craniofacial development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during embryonic development coincident with cilia development. The Fuz−/− mice exhibit severe craniofacial deformities including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal defects and hyperplastic malformed Meckels cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckels cartilage is expanded in the Fuz−/− mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that β-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/β-catenin signaling.