Gregory D. Bennett
University of Nebraska Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory D. Bennett.
Nature Genetics | 1999
Jorge A. Piedrahita; Betty Oetama; Gregory D. Bennett; Janée van Waes; Barton A. Kamen; James A. Richardson; Stephen W. Lacey; Richard G. W. Anderson; Richard H. Finnell
Periconceptional folic acid supplementation reduces the occurrence of several human congenital malformations, including craniofacial, heart and neural tube defects. Although the underlying mechanism is unknown, there may be a maternal-to-fetal folate-transport defect or an inherent fetal biochemical disorder that is neutralized by supplementation. Previous experiments have identified a folate-binding protein (Folbp1) that functions as a membrane receptor to mediate the high-affinity internalization and delivery of folate to the cytoplasm of the cell. In vitro, this receptor facilitates the accumulation of cellular folate a thousand-fold relative to the media, suggesting that it may be essential in cytoplasmic folate delivery in vivo. The importance of an adequate intracellular folate pool for normal embryogenesis has long been recognized in humans and experimental animals. To determine whether Folbp1 is involved in maternal-to-fetal folate transport, we inactivated Folbp1 in mice. We also produced mice lacking Folbp2, another member of the folate receptor family that is GPI anchored but binds folate poorly. Folbp2–/– embryos developed normally, but Folbp1–/– embryos had severe morphogenetic abnormalities and died in utero by embryonic day (E) 10. Supplementing pregnant Folbp1+/– dams with folinic acid reversed this phenotype in nullizygous pups. Our results suggest that Folbp1 has a critical role in folate homeostasis during development, and that functional defects in the human homologue (FOLR1) of Folbp1 may contribute to similar defects in humans.
Teratology | 1996
Bogdan C. Wlodarczyk; Johanna C. Craig; Gregory D. Bennett; James A. Calvin; Richard H. Finnell
The teratogenic potential of valproic acid has been well established both in experimental models and in human clinical studies. As with all human teratogens, there are genetically determined differences in individual susceptibility to the induction of congenital defects. Using a mouse model of valproate-induced neural tube defects, a study was undertaken to examine differential changes in gene expression for selected transcription factor (Pax-3, Emx-1, Emx-2, c-fos, c-jun, creb) and cell cycle checkpoint genes (bcl-2, p53, wee-1) during neural tube closure. In general, exposure to teratogenic concentrations of valproic acid elicited GD 9:12 control levels of transcription factor mRNA expression in GD 9:0 embryos of both strains. This accelerated developmental profile is marked by significant elevation of Emx-1, Emx-2, c-fos, c-jun, and creb expression. There was also a significant over expression of the cell cycle genes p53 and bcl-2 in the LM/Bc embryos in response to the teratogenic insult. Examination of the ratio of expression of these genes clearly favored bcl-2, which supports the hypothesis that altered neuroepithelial cell proliferation rates, rather than increased apoptosis, is the underlying mechanism by which valproic acid alters normal neural tube morphogenesis. An investigation into interactive effects of these genes on the molecular profile of GD 9:0 embryos further validated this observation. That is, the overall proliferative state among the control embryos was prematurely modified into a more differentiated state following teratogenic insult. These results suggest that alterations in the expression of multiple genes are most likely responsible for valproic acid-induced neural tube defects.
American Journal of Medical Genetics | 1997
Richard H. Finnell; Bogdan C. Wlodarczyk; Johanna C. Craig; Jorge A. Piedrahita; Gregory D. Bennett
The molecular basis for the well-established hierarchy of susceptibility to valproic acid-induced neural tube defects in inbred mouse strains was examined using in situ transcription and anti-sense RNA amplification methodologies with both univariate and multivariate analyses of the resulting gene expression data. The highly sensitive SWV strain demonstrated a significant reduction in the expression of the folate binding protein (FBP-1) following the teratogenic insult at gestational day 8:18, while the more resistant LM/Bc embryos were up-regulating this gene in response to valproic acid treatment. More importantly, at all 3 gestational timepoints spanning the period of murine neural tube closure examined in this study, the LM/Bc embryos had significantly higher MTHFR (5,10-methylenetetrahydrofolate reductase) gene expression levels compared to the SWV embryos. As this folate pathway enzyme is important in homocysteine and methionine metabolism, it suggests that the SWV embryos may be hypomethylated, and essential gene expression during critical periods of neural tube closure is compromised by the teratogenic exposure to valproic acid. This study represents the first evidence of a strain difference in transcriptional activity in response to a teratogenic exposure that might be causally related to the development of the teratogen-induced congenital malformations.
Annals of the New York Academy of Sciences | 2006
Richard H. Finnell; Janee Gelineau-van Waes; Gregory D. Bennett; Robert C. Barber; Bogdan J. Wlodarczyk; Gary M. Shaw; Edward J. Lammer; Jorge A. Piedrahita; James Eberwine
Abstract: Neural tube defects (NTDs) are among the most common of all human congenital defects, with multifactorial etiologies comprising both environmental and genetic components. Several murine model systems have been developed in an effort to elucidate genetic factors regulating expression of NTDs. Strain‐dependent differences in susceptibility to teratogenic insults and altered patterns of gene expression observed within the neuroepithelium of affected embryos support the hypothesis that subtle genetic changes can result in NTDs. Since several affected genes are folate‐regulated, transgenic knockout mice lacking a functional folate receptor were developed. Nullizygous embryos died in utero with significant morphological defects, supporting the critical role of folic acid in early embryogenesis. While epidemiological studies have not established an association between polymorphisms in the human folate receptor gene and NTDs, it is known that folate supplementation reduces infant NTD risk. Continued efforts are therefore necessary to reveal the mechanism by which folate works and the nature of the gene(s) responsible for human NTDs.
Epilepsia | 2002
Nina Isoherranen; H. Steve White; Richard H. Finnell; Boris Yagen; Jose H. Woodhead; Gregory D. Bennett; Karen S. Wilcox; Matthew E. Barton; Meir Bialer
Summary: Purpose: The studies presented here represent our efforts to investigate the anticonvulsant activity of N‐methyl‐tetramethylcyclopropyl carboxamide (M‐TMCD) and its metabolite tetramethylcyclopropyl carboxamide (TMCD) in various animal (rodent) models of human epilepsy, and to evaluate their ability to induce neural tube defects (NTDs) and neurotoxicity.
Epilepsia | 1997
Gregory D. Bennett; Franciscus Lau; James A. Calvin; Richard H. Finnell
Summary: Purpose: We wished to determine whether chronic phenytoin (PHT) exposure could impair neural development and if any morphological alterations could be linked to changes in gene expression.
Developmental Genetics | 1996
Bogdan J. Wlodarczyk; Gregory D. Bennett; James A. Calvin; Johanna C. Craig; Richard H. Finnell
We examined the morphological and molecular consequences of acute in utero exposure to teratogenic concentrations of arsenate. The treatment produced a dose-related increase in neural tube defects, along with a significant alteration in the pattern of gene expression for several transcription factors (creb, Hox 3.1, Pax3, and Emx-1) that were examined using in situ transcription and antisense RNA amplification procedures. On gestational day 9:0, there was a significant delay in the embryos progression through neural tube closure, accompanied by a significant downregulation of Hox 3.1 expression and a significant upregulation of Pax3, Emx-1, and creb. As both Hox 3.1 and Pax3 serve to regulate N-CAM expression, it is possible that abnormalities associated with N-CAM may compromise neural crest cell migration and normal neural tube closure.
Pharmaceutical Research | 1999
Ofer Spiegelstein; Boris Yagen; René H. Levy; Richard H. Finnell; Gregory D. Bennett; Michael Roeder; Volker Schurig; Meir Bialer
AbstractPurpose. The purpose of this study was to evaluate there existed stereoselective effects in the pharmacokinetics, anticonvulsant activity, microsomal epoxide hydrolase (mEH) inhibition, and teratogenicity of the two enantiomers of propylisopropyl acetamide (PID), a CNS-active chiral amide analogue of valproic acid. Methods. Racemic PID, as well as the individual enantiomers, were intravenously administered to six dogs in order to investigate the stereoselectivity in their pharmacokinetics. Anticonvulsant activity was evaluated in mice (ip) and rats (oral), mEH inhibition studies were performed in human liver microsomes, and teratogenicity was evaluated in an inbred susceptible mice strain. Results. Following intravenous administration to dogs of the individual enantiomers, (R)-PID had significantly lower clearance and longer half-life than (S)-PID, however, the volumes of distribution were similar. In contrast, following intravenous administration of racemic PID, both enantiomers had similar pharmacokinetic parameters. In rats (oral), (R)-PID had a significantly lower ED50 in the maximal electroshock seizure test than (S)-PID; 16 and 25 mg/kg, respectively. PID enantiomers were non-teratogenic and did not demonstrate stereoselective mEH inhibition. Conclusions. (R)-PID demonstrated better anticonvulsant activity, lower clearance and a longer half-life compared to (S)-PID. When racemic PID was administered, the clearance of (S)-PID was significantly reduced, reflecting an enantiomer-enantiomer interaction.
Reproductive Toxicology | 2000
Gregory D. Bennett; Bogdan J. Wlodarczyk; James A. Calvin; Johanna C. Craig; Richard H. Finnell
Abstract Although the teratogenicity of valproic acid (VPA) has been well established, the mechanism(s) by which this anticonvulsant drug induces malformations remains controversial. Using the combined molecular techniques of in situ-transcription (IST) and antisense RNA (aRNA) amplification we analyzed VPA-induced alterations in the gene expression for 10 genes within the neural tubes of embryos from two murine strains that have been shown to differ in their susceptibility to VPA-induce neural tube defects (NTD). Pregnant dams from both SWV (susceptible) and LM/Bc (resistant) strains were either treated with saline (control) or VPA (600 mg/kg) on gestational day (GD) 8:12 (day:hour). Neural tubes were isolated from control or VPA exposed embryos at three gestational time points, which represented the beginning (GD 8:18), middle (GD 9:00), and end (GD 9:12) of neural tube closure (NTC) in both of these murine strains. Using univariant statistics we demonstrated that in LM/Bc embryos with NTDs, the expression of bdnf , ngf , and trk , ngf-R were significantly elevated at all three time points, and the cytokine, cntf was significantly decreased at GD 9:00. In contrast, the major gene alterations observed in SWV embryos were a significant increase in tfgα and tgfβ1–3 at GD 9:00. In an effort to better define the more intricate interactions between VPA exposure and the expression of these genes, we analyzed our data using Principal Component Analysis. The results from this analysis demonstrated that embryos from these two stains behaved differently, not only in response to a VPA exposure, but also under control conditions, which may explain the multifactorial nature of NTDs in these mice.
Teratology | 1999
Janee Gelineau-van Waes; Gregory D. Bennett; Richard H. Finnell
In utero exposure to the anticonvulsant drug phenytoin has been shown to alter normal embryonic development, leading to a pattern of dysmorphogenesis known as the Fetal Hydantoin Syndrome. This embryopathy is characterized by growth retardation, microcephaly, mental deficiency, and craniofacial malformations, although the precise mechanism(s) by which phenytoin alters normal developmental pathways remains unknown. To better understand the molecular events involved in the pathogenesis of phenytoin-induced congenital defects, alterations in gene expression were examined during critical periods of craniofacial development. Pregnant SWV mice were administered phenytoin (60 mg/kg/day) from gestational day 6.5 until they were sacrificed at selected developmental time points. Tissue from the craniofacial region of control and exposed embryos was isolated, and samples were subjected to in situ transcription, antisense RNA amplification, and hybridization on reverse Northern blots to quantitatively assess expression of 36 candidate genes. Chronic phenytoin exposure significantly altered expression of several genes at distinct times during morphogenesis. Results of these studies show that expression of the retinoic acid receptors (RAR) alpha, beta, and gamma were significantly increased by phenytoin exposure. Elevations in gene expression of laminin beta 1, and the growth factors IGF-2, TGF alpha, and TGF beta 1, were also demonstrated in the craniofacial region of phenytoin-exposed embryos. As several of these genes are transcriptionally regulated by retinoic-acid-responsive elements in their promoter regions, phenytoin-induced alterations in expression of the RAR isoforms may have severe downstream consequences in the regulation of events necessary for normal craniofacial development. Such alterations occurring coordinately at critical times during craniofacial development may account for the dysmorphogenesis often associated with phenytoin exposure.