Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boi Hanh Huynh is active.

Publication


Featured researches published by Boi Hanh Huynh.


The EMBO Journal | 2008

Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters.

Sibali Bandyopadhyay; Filipe Gama; Maria Micaela Molina-Navarro; José M. Gualberto; Ronald Claxton; Sunil G. Naik; Boi Hanh Huynh; Enrique Herrero; Jean Pierre Jacquot; Michael K. Johnson; Nicolas Rouhier

Glutaredoxins (Grxs) are small oxidoreductases that reduce disulphide bonds or protein‐glutathione mixed disulphides. More than 30 distinct grx genes are expressed in higher plants, but little is currently known concerning their functional diversity. This study presents biochemical and spectroscopic evidence for incorporation of a [2Fe–2S] cluster in two heterologously expressed chloroplastic Grxs, GrxS14 and GrxS16, and in vitro cysteine desulphurase‐mediated assembly of an identical [2Fe–2S] cluster in apo‐GrxS14. These Grxs possess the same monothiol CGFS active site as yeast Grx5 and both were able to complement a yeast grx5 mutant defective in Fe–S cluster assembly. In vitro kinetic studies monitored by CD spectroscopy indicate that [2Fe–2S] clusters on GrxS14 are rapidly and quantitatively transferred to apo chloroplast ferredoxin. These data demonstrate that chloroplast CGFS Grxs have the potential to function as scaffold proteins for the assembly of [2Fe–2S] clusters that can be transferred intact to physiologically relevant acceptor proteins. Alternatively, they may function in the storage and/or delivery of preformed Fe–S clusters or in the regulation of the chloroplastic Fe–S cluster assembly machinery.


Biochemistry | 2009

The Yeast Iron Regulatory Proteins Grx3/4 and Fra2 Form Heterodimeric Complexes Containing a [2Fe-2S] Cluster with Cysteinyl and Histidyl Ligation

Haoran Li; Daphne T. Mapolelo; Nin N. Dingra; Sunil G. Naik; Nicholas S. Lees; Brian M. Hoffman; Pamela J. Riggs-Gelasco; Boi Hanh Huynh; Michael K. Johnson; Caryn E. Outten

The transcription of iron uptake and storage genes in Saccharomyces cerevisiae is primarily regulated by the transcription factor Aft1. Nucleocytoplasmic shuttling of Aft1 is dependent upon mitochondrial Fe-S cluster biosynthesis via a signaling pathway that includes the cytosolic monothiol glutaredoxins (Grx3 and Grx4) and the BolA homologue Fra2. However, the interactions between these proteins and the iron-dependent mechanism by which they control Aft1 localization are unclear. To reconstitute and characterize components of this signaling pathway in vitro, we have overexpressed yeast Fra2 and Grx3/4 in Escherichia coli. We have shown that coexpression of recombinant Fra2 with Grx3 or Grx4 allows purification of a stable [2Fe-2S](2+) cluster-containing Fra2-Grx3 or Fra2-Grx4 heterodimeric complex. Reconstitution of a [2Fe-2S] cluster on Grx3 or Grx4 without Fra2 produces a [2Fe-2S]-bridged homodimer. UV-visible absorption and CD, resonance Raman, EPR, ENDOR, Mossbauer, and EXAFS studies of [2Fe-2S] Grx3/4 homodimers and the [2Fe-2S] Fra2-Grx3/4 heterodimers indicate that inclusion of Fra2 in the Grx3/4 Fe-S complex causes a change in the cluster stability and coordination environment. Taken together, our analytical, spectroscopic, and mutagenesis data indicate that Grx3/4 and Fra2 form a Fe-S-bridged heterodimeric complex with Fe ligands provided by the active site cysteine of Grx3/4, glutathione, and a histidine residue. Overall, these results suggest that the ability of the Fra2-Grx3/4 complex to assemble a [2Fe-2S] cluster may act as a signal to control the iron regulon in response to cellular iron status in yeast.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Subcellular compartmentalization of human Nfu, an iron–sulfur cluster scaffold protein, and its ability to assemble a [4Fe–4S] cluster

Wing-Hang Tong; Guy N. L. Jameson; Boi Hanh Huynh; Tracey A. Rouault

Iron–sulfur (Fe–S) clusters serve as cofactors in many proteins that have important redox, catalytic, and regulatory functions. In bacteria, biogenesis of Fe–S clusters is mediated by multiple gene products encoded by the isc and nif operons. In particular, genetic and biochemical studies suggest that IscU, Nfu, and IscA function as scaffold proteins for assembly and delivery of rudimentary Fe–S clusters to target proteins. Here we report the characterization of human Nfu. A combination of biochemical and spectroscopic techniques, including UV-visible absorption and 57Fe Mössbauer spectroscopies, have been used to investigate the ability of purified human Nfu to assemble Fe–S clusters. The results suggest that Nfu can assemble approximately one labile [4Fe–4S] cluster per two Nfu monomers, and support the proposal that Nfu is an alternative scaffold protein for assembly of clusters that are subsequently used for maturation of targeted Fe–S proteins. Analyses of genomic DNA, transcripts, and translation products indicate that alternative splicing of a common pre-mRNA results in synthesis of two Nfu isoforms with distinct subcellular localizations. Isoform I is localized in the mitochondria, whereas isoform II is present in the cytosol and the nucleus. These results, together with previous reports of subcellular distributions of isoforms of human IscS and IscU in mitochondria, cytosol, and nucleus suggest that the Fe–S cluster assembly machineries are compartmentalized in higher eukaryotes.


Journal of the American Chemical Society | 2009

Native Escherichia coli SufA, Coexpressed with SufBCDSE, Purifies as a [2Fe−2S] Protein and Acts as an Fe−S Transporter to Fe−S Target Enzymes

Vibha Gupta; Maïté Sendra; Sunil G. Naik; Harsimranjit K. Chahal; Boi Hanh Huynh; F. Wayne Outten; Marc Fontecave; Sandrine Ollagnier de Choudens

Iron-sulfur (Fe-S) clusters are versatile biological cofactors that require biosynthetic systems in vivo to be assembled. In Escherichia coli, the Isc (iscRSUA-hscBA-fdx-iscX) and Suf (sufABCDSE) pathways fulfill this function. Despite extensive biochemical and genetic analysis of these two pathways, the physiological function of the A-type proteins of each pathway (IscA and SufA) is still unclear. Studies conducted in vitro suggest two possible functions for A-type proteins, as Fe-S scaffold/transfer proteins or as iron donors during cluster assembly. To resolve this issue, SufA was coexpressed in vivo with its cognate partner proteins from the suf operon, SufBCDSE. Native SufA purified anaerobically using this approach was unambiguously demonstrated to be a [2Fe-2S] protein by biochemical analysis and UV-vis, Mossbauer, resonance Raman, and EPR spectroscopy. Furthermore, native [2Fe-2S] SufA can transfer its Fe-S cluster to both [2Fe-2S] and [4Fe-4S] apoproteins. These results clearly show that A-type proteins form Fe-S clusters in vivo and are competent to function as Fe-S transfer proteins as purified. This study resolves the contradictory results from previous in vitro studies and demonstrates the critical importance of providing in vivo partner proteins during protein overexpression to allow correct biochemical maturation of metalloproteins.


Journal of the American Chemical Society | 2009

Intensely Colored Mixed-Valence Iron(II) Iron(III) Formate Analogue of Prussian Blue Exhibits Néel N-Type Ferrimagnetism

Karl S. Hagen; Sunil G. Naik; Boi Hanh Huynh; Antonio Masello; George Christou

The reaction of colorless iron(II) formate or the mixed-valence cluster Fe(3)O(MeCOO)(6)(H(2)O)(3) with formic acid in dimethylformamide exposed to air at 110 degrees C affords black crystals of the mixed-valence (Me(2)NH(2))[Fe(II)Fe(III)(HCOO)(6)] three-dimensional (3D) structure in which the cations occupy half of the channels. The structure consists of alternating layers of Fe(II)O(6) [Fe(1)-O(1), 2.119(1) A] and Fe(III)O(6) [Fe(2)-O(2), 2.0049(9) A] octahedra bridged by anti-anti-bonded formates to afford an open-framework 3D structure. The structure is very similar to those of (Me(2)NH(2))[Fe(II)(HCOO)(3)] and [Fe(III)(HCOO)(3)].HCOOH, both of which are colorless. The black crystals appear dark-purple (lambda(max) approximately 520 nm) when powdered. The room-temperature Mössbauer spectrum confirms the 1:1 ratio of Fe(II) (delta = 1.03 mm/s, DeltaE(Q) = 1.16 mm/s) and Fe(III) (delta = 0.62 mm/s, DeltaE (Q) = 0.49 mm/s). Magnetic ordering that includes negative magnetization at low fields occurs at low temperature. The only molecular-based magnetic materials in which this phenomenon has been observed are the 2D polyiron(II,III) oxalates A[Fe(II)Fe(III)(C(2)O(4))(3)] (A = R(4)N(+) cation).


Methods in Enzymology | 1995

[20] Use of rapid kinetics methods to study the assembly of the diferric-tyrosyl radical cofactor of E. coli ribonucleotide reductase

J. Martin Bollinger; Wing Hangtong; Natarajan Ravi; Boi Hanh Huynh; Dale E. Edmondson; JoAnne Stubbe

The SF-Abs, RFQ-EPR, and RFQ-Möss data on the R2 reconstitution reaction are all consistent with the mechanism of Scheme I, in which the intermediate X is the immediate precursor to the product cofactor, and illustrate how the continuous SF approach and the discontinuous RFQ methods can be complementary. Given the inherent differences in the methods, it should not be taken for granted that data from the two will be consistent. A number of problems can be associated with the RFQ approach. For example, isopentane could conceivably interfere with or alter the chemistry to be studied. A second potential problem involves temperature-dependent equilibria among different intermediate species. This problem has been encountered by Dooley et al. with the 6-hydroxydopa-requiring protein, plasma amine oxidase and was previously observed with the adenosylcobalamin-dependent ribonucleotide reductase by Blakley and co-workers. This potential complication should be considered when discrepancies arise between SF and RFQ data and in low temperature structural studies of reactive intermediates in general. Each of the three methods employed can yield time-resolved quantitation of reaction components. In this regard, SF-Abs has the disadvantage of poor resolution, such that quantitation of individual components most often requires sophisticated mathematical analysis. Obvious advantages to the RFQ-Möss method are the presence of an internal standard (the known amount of 57Fe being proportional to the total absorption area) and the spectroscopic activity of all reaction components which contain iron. In our hands, quantitation by RFQ-EPR was most problematic and least reproducible. This irreproducibility most likely relates to heterogeneity among samples in terms of volume and density. As discussed in detail by Ballou and Palmer, the packing factor, which relates to the fraction of a sample made up by the reaction solution (the remainder being frozen isopentane), is dependent on the investigator. Given this caveat, it is not surprising that the RFQ-EPR data had the greatest uncertainty in our hands. Placing a chemically unreactive, EPR active standard in each reaction mixture could help alleviate this problem. Time-resolved Möss methods can be extremely powerful if excellent, nonoverlapping reference spectra of starting materials, products, and intermediates are available. All of the iron centers can be examined simultaneously. The problems associated with Möss arise from its extreme insensitivity. It takes millimolar solutions of proteins and several days for data collection of each time point.(ABSTRACT TRUNCATED AT 400 WORDS)


Biochemistry | 2012

Spectroscopic and Functional Characterization of Iron–Sulfur Cluster-Bound Forms of Azotobacter vinelandiiNifIscA

Daphne T. Mapolelo; Bo Zhang; Sunil G. Naik; Boi Hanh Huynh; Michael K. Johnson

The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.


Journal of the American Chemical Society | 2013

Monothiol Glutaredoxins Can Bind Linear [Fe3S4]+ and [Fe4S4]2+ Clusters in Addition to [Fe2S2]2+ Clusters: Spectroscopic Characterization and Functional Implications

Bo Zhang; Sibali Bandyopadhyay; Priyanka Shakamuri; Sunil G. Naik; Boi Hanh Huynh; Jérémy Couturier; Nicolas Rouhier; Michael K. Johnson

Saccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2](2+) cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically, after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4](+) cluster. The excited-state electronic properties and ground-state electronic and vibrational properties of the linear [Fe3S4](+) cluster have been characterized using UV-vis absorption/CD/MCD, EPR, Mössbauer, and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4](+) cluster with properties similar to those reported for synthetic linear [Fe3S4](+) clusters and the linear [Fe3S4](+) clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2](2+) clusters, rather than linear [Fe3S4](+) clusters or mixtures of linear [Fe3S4](+) and [Fe2S2](2+) clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4](2+) cluster that is competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4](+) and [Fe4S4](2+) clusters in Grx5 has been assessed by spectroscopic, mutational, and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4](+) clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4](2+) cluster-containing proteins are discussed in light of these results.


Biochemistry | 2012

Spectroscopic and Functional Characterization of Iron-Bound Forms of Azotobacter vinelandiiNifIscA

Daphne T. Mapolelo; Bo Zhang; Sunil G. Naik; Boi Hanh Huynh; Michael K. Johnson

The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.


Journal of the American Chemical Society | 2009

Characterization of a peroxodiiron(III) intermediate in the T201S variant of toluene/o-xylene monooxygenase hydroxylase from Pseudomonas sp. OX1.

Woon Ju Song; Rachel K. Behan; Sunil G. Naik; Boi Hanh Huynh; Stephen J. Lippard

We report the observation of a novel intermediate in the reaction of a reduced toluene/o-xylene monooxygenase hydroxylase (ToMOH(red)) T201S variant, in the presence of a regulatory protein (ToMOD), with dioxygen. This species is the first oxygenated intermediate with an optical band in any toluene monooxygenase. The UV-vis and Mossbauer spectroscopic properties of the intermediate allow us to assign it as a peroxodiiron(III) species, T201S(peroxo), similar to H(peroxo) in methane monooxygenase. Although T201S generates T201S(peroxo) in addition to optically transparent ToMOH(peroxo), previously observed in wild-type ToMOH, this conservative variant is catalytically active in steady-state catalysis and single-turnover experiments and displays the same regiospecificity for toluene and slightly different regiospecificity for o-xylene oxidation.

Collaboration


Dive into the Boi Hanh Huynh's collaboration.

Top Co-Authors

Avatar

Isabel Moura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Carsten Krebs

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José J. G. Moura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Tavares

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

J. LeGall

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Guy N. L. Jameson

MacDiarmid Institute for Advanced Materials and Nanotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge