Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bokun Cheng is active.

Publication


Featured researches published by Bokun Cheng.


Journal of Biological Chemistry | 2005

Bacterial Cell Killing Mediated by Topoisomerase I DNA Cleavage Activity

Bokun Cheng; Shikha Shukla; Sarinnapha Vasunilashorn; Somshuvra Mukhopadhyay; Yuk Ching Tse-Dinh

DNA topoisomerases are important clinical targets for antibacterial and anticancer therapy. At least one type IA DNA topoisomerase can be found in every bacterium, making it a logical target for antibacterial agents that can convert the enzyme into poison by trapping its covalent complex with DNA. However, it has not been possible previously to observe the consequence of having such a stabilized covalent complex of bacterial topoisomerase I in vivo. We isolated a mutant of recombinant Yersinia pestis topoisomerase I that forms a stabilized covalent complex with DNA by screening for the ability to induce the SOS response in Escherichia coli. Overexpression of this mutant topoisomerase I resulted in bacterial cell death. From sequence analysis and site-directed mutagenesis, it was determined that a single amino acid substitution in the TOPRIM domain changing a strictly conserved glycine residue to serine in either the Y. pestis or E. coli topoisomerase I can result in a mutant enzyme that has the SOS-inducing and cell-killing properties. Analysis of the purified mutant enzymes showed that they have no relaxation activity but retain the ability to cleave DNA and form a covalent complex. These results demonstrate that perturbation of the active site region of bacterial topoisomerase I can result in stabilization of the covalent intermediate, with the in vivo consequence of bacterial cell death. Small molecules that induce similar perturbation in the enzyme-DNA complex should be candidates as leads for novel antibacterial agents.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I

Zhongtao Zhang; Bokun Cheng; Yuk-Ching Tse-Dinh

DNA topoisomerases control DNA topology by breaking and rejoining DNA strands via covalent complexes with cleaved DNA substrate as catalytic intermediates. Here we report the structure of Escherichia coli topoisomerase I catalytic domain (residues 2–695) in covalent complex with a cleaved single-stranded oligonucleotide substrate, refined to 2.3-Å resolution. The enzyme-substrate intermediate formed after strand cleavage was captured due to the presence of the D111N mutation. This structure of the covalent topoisomerase-DNA intermediate, previously elusive for type IA topoisomerases, shows distinct conformational changes from the structure of the enzyme without bound DNA and provides detailed understanding of the covalent catalysis required for strand cleavage to take place. The portion of cleaved DNA 5′ to the site of cleavage is anchored tightly with extensive noncovalent protein–DNA interactions as predicted by the “enzyme-bridged” model. Distortion of the scissile strand at the -4 position 5′ to the cleavage site allows specific selectivity of a cytosine base in the binding pocket. Many antibacterial and anticancer drugs initiate cell killing by trapping the covalent complexes formed by topoisomerases. We have demonstrated in previous mutagenesis studies that accumulation of the covalent complex of bacterial topoisomerase I is bactericidal. This structure of the covalent intermediate provides the basis for the design of novel antibiotics that can trap the enzyme after formation of the covalent complex.


BMC Biochemistry | 2009

Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol

Thirunavukkarasu Annamalai; Neil Dani; Bokun Cheng; Yuk-Ching Tse-Dinh

BackgroundMycobacterium tuberculosis DNA topoisomerase I is an attractive target for discovery of novel TB drugs that act by enhancing the accumulation of the topoisomerase-DNA cleavage product. It shares a common transesterification domain with other type IA DNA topoisomerases. There is, however, no homology between the C-terminal DNA binding domains of Escherichia coli and M. tuberculosis DNA topoisomerase I proteins.ResultsA new protocol for expression and purification of recombinant M. tuberculosis DNA topoisomerase I (MtTOP) has been developed to produce enzyme of much higher specific activity than previously characterized recombinant enzyme. MtTOP was found to be less efficient than E. coli DNA topoisomerase I (EcTOP) in removal of remaining negative supercoils from partially relaxed DNA. DNA cleavage by MtTOP was characterized for the first time. Comparison of DNA cleavage site selectivity with EcTOP showed differences in cleavage site preferences, but the preferred sites of both enzymes have a C nucleotide in the -4 position.ConclusionRecombinant M. tuberculosis DNA topoisomerase I can be expressed as a soluble protein and purified in high yield from E. coli host with a new protocol. Analysis of DNA cleavage with M. tuberculosis DNA substrate showed that the preferred DNA cleavage sites have a C nucleotide in the -4 position.


PLOS ONE | 2013

Identification of Anziaic Acid, a Lichen Depside from Hypotrachyna sp., as a New Topoisomerase Poison Inhibitor

Bokun Cheng; Shugeng Cao; Víctor Vásquez; Thirunavukkarasu Annamalai; Giselle Tamayo-Castillo; Jon Clardy; Yuk-Ching Tse-Dinh

Topoisomerase inhibitors are effective for antibacterial and anticancer therapy because they can lead to the accumulation of the intermediate DNA cleavage complex formed by the topoisomerase enzymes, which trigger cell death. Here we report the application of a novel enzyme-based high-throughput screening assay to identify natural product extracts that can lead to increased accumulation of the DNA cleavage complex formed by recombinant Yersinia pestis topoisomerase I as part of a larger effort to identify new antibacterial compounds. Further characterization and fractionation of the screening positives from the primary assay led to the discovery of a depside, anziaic acid, from the lichen Hypotrachyna sp. as an inhibitor for both Y. pestis and Escherichia coli topoisomerase I. In in vitro assays, anziaic acid exhibits antibacterial activity against Bacillus subtilis and a membrane permeable strain of E. coli. Anziaic acid was also found to act as an inhibitor of human topoisomerase II but had little effect on human topoisomerase I. This is the first report of a depside with activity as a topoisomerase poison inhibitor and demonstrates the potential of this class of natural products as a source for new antibacterial and anticancer compounds.


Journal of Molecular Biology | 2009

Asp-to-Asn Substitution at the First Position of the DxD TOPRIM Motif of Recombinant Bacterial Topoisomerase I Is Extremely Lethal to E. coli

Bokun Cheng; Thirunavakkarasu Annamalai; Elena Sorokin; Maria Abrenica; Sandra Aedo; Yuk-Ching Tse-Dinh

The TOPRIM domain found in many nucleotidyl transferases contains a DxD motif involved in magnesium ion coordination for catalysis. Medium- to high-copy-number plasmid clones of Yersinia pestis topoisomerase I (YpTOP) with Asp-to-Asn substitution at the first aspartate residue (D117N) of this motif could not be generated in Escherichia coli without second-site mutation even when expression was under the control of the tightly regulated BAD promoter and suppressed by 2% glucose in the medium. Arabinose induction of a single-copy YpTOP-D117N mutant gene integrated into the chromosome resulted in approximately 10(5)-fold of cell killing in 2.5 h. Attempt to induce expression of the corresponding E. coli topoisomerase I mutant (EcTOP-D111N) encoded on a high-copy-number plasmid resulted in either loss of viability or reversion of the clone to wild type. High-copy-number plasmid clones of YpTOP-D119N and EcTOP-D113N with the Asn substitution at the second Asp of the TOPRIM motif could be stably maintained, but overexpression also decreased cell viability significantly. The Asp-to-Asn substitutions at these TOPRIM residues can selectively decrease Mg(2+) binding affinity with minimal disruption of the active-site geometry, leading to trapping of the covalent complex with cleaved DNA and causing bacterial cell death. The extreme sensitivity of the first TOPRIM position suggested that this might be a useful site for binding of small molecules that could act as topoisomerase poisons.


Nucleic Acids Research | 2008

Inhibition of Mg2+ binding and DNA religation by bacterial topoisomerase I via introduction of an additional positive charge into the active site region

Elena Sorokin; Bokun Cheng; Siddarth Rathi; Sandra Aedo; Maria Abrenica; Yuk-Ching Tse-Dinh

Among bacterial topoisomerase I enzymes, a conserved methionine residue is found at the active site next to the nucleophilic tyrosine. Substitution of this methionine residue with arginine in recombinant Yersinia pestis topoisomerase I (YTOP) was the only substitution at this position found to induce the SOS response in Escherichia coli. Overexpression of the M326R mutant YTOP resulted in ∼4 log loss of viability. Biochemical analysis of purified Y. pestis and E. coli mutant topoisomerase I showed that the Met to Arg substitution affected the DNA religation step of the catalytic cycle. The introduction of an additional positive charge into the active site region of the mutant E. coli topoisomerase I activity shifted the pH for optimal activity and decreased the Mg2+ binding affinity. This study demonstrated that a substitution outside the TOPRIM motif, which binds Mg2+directly, can nonetheless inhibit Mg2+ binding and DNA religation by the enzyme, increasing the accumulation of covalent cleavage complex, with bactericidal consequence. Small molecules that can inhibit Mg2+ dependent religation by bacterial topoisomerase I specifically could be developed into useful new antibacterial compounds. This approach would be similar to the inhibition of divalent ion dependent strand transfer by HIV integrase in antiviral therapy.


Nucleic Acids Research | 2015

Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I.

Kemin Tan; Qingxuan Zhou; Bokun Cheng; Zhongtao Zhang; Andrzej Joachimiak; Yuk Ching Tse-Dinh

Escherichia coli topoisomerase I has an essential function in preventing hypernegative supercoiling of DNA. A full length structure of E. coli topoisomerase I reported here shows how the C-terminal domains bind single-stranded DNA (ssDNA) to recognize the accumulation of negative supercoils in duplex DNA. These C-terminal domains of E. coli topoisomerase I are known to interact with RNA polymerase, and two flexible linkers within the C-terminal domains may assist in the movement of the ssDNA for the rapid removal of transcription driven negative supercoils. The structure has also unveiled for the first time how the 4-Cys zinc ribbon domain and zinc ribbon-like domain bind ssDNA with primarily π-stacking interactions. This novel structure, in combination with new biochemical data, provides important insights into the mechanism of genome regulation by type IA topoisomerases that is essential for life, as well as the structures of homologous type IA TOP3α and TOP3β from higher eukaryotes that also have multiple 4-Cys zinc ribbon domains required for their physiological functions.


Journal of Antimicrobial Chemotherapy | 2012

3,4-Dimethoxyphenyl bis-benzimidazole, a novel DNA topoisomerase inhibitor that preferentially targets Escherichia coli topoisomerase I

Sandhya Bansal; Devapriya Sinha; Manish Singh; Bokun Cheng; Yuk-Ching Tse-Dinh; Vibha Tandon

OBJECTIVES Antibiotic resistance in bacterial pathogens is a serious clinical problem. Novel targets are needed to combat increasing drug resistance in Escherichia coli. Our objective is to demonstrate that 2-(3,4-dimethoxyphenyl)-5-[5-(4-methylpiperazin-1-yl)-1H-benzimidazol-2yl]-1H-benzimidazole (DMA) inhibits E. coli DNA topoisomerase I more strongly than human topoisomerase I. In addition, DMA is non-toxic to mammalian cells at antibiotic dosage level. METHODS In the present study, we have established DMA as an antibacterial compound by determining MICs, post-antibiotic effects (PAEs) and MBCs for different standard as well as clinical strains of E. coli. We have described the differential catalytic inhibitory mechanism of bis-benzimidazole, DMA, for human and E. coli topoisomerase I and topoisomerase II by performing different assays, including relaxation assays, cleavage-religation assays, DNA unwinding assays, ethidium bromide displacement assays, decatenation assays and DNA gyrase supercoiling assays. RESULTS DMA significantly inhibited bacterial growth at a very low concentration, but did not affect human cell viability at higher concentrations. Activity assays showed that it preferentially targeted E. coli topoisomerase I over human topoisomerase I, topoisomerase II and gyrase. Cleavage-religation assays confirmed DMA as a poison inhibitor of E. coli topoisomerase I. This study illuminates new properties of DMA, which may be further modified to develop an efficient topoisomerase inhibitor that is selective towards bacterial topoisomerase I. CONCLUSIONS This is the first report of a bis-benzimidazole acting as an E. coli topoisomerase I inhibitor. DMA is a safe, non-cytotoxic molecule to human cells at concentrations that are needed for antibacterial activity.


Nucleic Acids Research | 2008

Mutation adjacent to the active site tyrosine can enhance DNA cleavage and cell killing by the TOPRIM Gly to Ser mutant of bacterial topoisomerase I

Bokun Cheng; Elena Sorokin; Yuk-Ching Tse-Dinh

The TOPRIM DXDXXG residues of type IA and II topoisomerases are involved in Mg(II) binding and the cleavage-rejoining of DNA. Mutation of the strictly conserved glycine to serine in Yersinia pestis and Escherichia coli topoisomerase I results in bacterial cell killing due to inhibition of DNA religation after DNA cleavage. In this study, all other substitutions at the TOPRIM glycine of Y. pestis topoisomerase I were examined. While the Gly to Ala substitution allowed both DNA cleavage and religation, other mutations abolished DNA cleavage. DNA cleavage activity retained by the Gly to Ser mutant could be significantly enhanced by a second mutation of the methionine residue adjacent to the active site tyrosine. Induction of mutant topoisomerase with both the TOPRIM glycine and active site region methionine mutations resulted in up to 40-fold higher cell killing rate when compared with the single TOPRIM Gly to Ser mutant. Bacterial type IA topoisomerases are potential targets for discovery of novel antibiotics. These results suggest that compounds that interact simultaneously with the TOPRIM motif and the molecular surface around the active site tyrosine could be highly efficient topoisomerase poisons through both enhancement of DNA cleavage and inhibition of DNA rejoining.


Fems Microbiology Letters | 2003

RNase H overproduction allows the expression of stress-induced genes in the absence of topoisomerase I

Bokun Cheng; Shan Rui; Chengling Ji; Vivien W Gong; Tina K. Van Dyk; Marc Drolet; Yuk-Ching Tse-Dinh

Induction of stress proteins in response to heat shock was found to be reduced significantly in Escherichia coli with DeltatopA mutation. RNase H overexpression in the DeltatopA mutant partially restored the sigma(32)-dependent induction of stress genes in response to high temperature and ethanol. The presence of overexpressed RNase H also improved the survival rate of the DeltatopA mutant after high temperature and oxidative challenges. Topoisomerase I is likely required during stress response for preventing accumulation of transcription-driven hypernegative supercoiling and R-loop formation at induced stress genes loci.

Collaboration


Dive into the Bokun Cheng's collaboration.

Top Co-Authors

Avatar

Yuk-Ching Tse-Dinh

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Thirunavukkarasu Annamalai

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Elena Sorokin

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

Gagandeep Narula

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Maria Abrenica

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

I-Fen Liu

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

Sandra Aedo

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

Chengling Ji

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin He

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge