Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bon Ki Ku is active.

Publication


Featured researches published by Bon Ki Ku.


Annals of Occupational Hygiene | 2010

Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.

Douglas E. Evans; Bon Ki Ku; M. Eileen Birch; Kevin H. Dunn

Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations were described for processes as required.


Aerosol Science and Technology | 2009

Relation between Electrical Mobility, Mass, and Size for Nanodrops 1–6.5 nm in Diameter in Air

Bon Ki Ku; Juan Fernandez de la Mora

A large number of data on mobility and mass have been newly obtained or reanalyzed for clusters of a diversity of materials, with the aim of determining the relation between electrical mobility (Z) and mass diameter d m = (6m/ π ρ ) 1/3 (m is the particle mass and ρ the bulk density of the material forming the cluster) for nanoparticles with d m ranging from 1 nm to 6.5 nm. The clusters were generated by electrospraying solutions of ionic liquids, tetra-alkyl ammonium salts, cyclodextrin, bradykinin, etc., in acetonitrile, ethanol, water, or formamide. Their electrical mobilities Z in air were measured directly by a differential mobility analyzer (DMA) of high resolution. Their masses m were determined either directly via mass spectrometry, or assigned indirectly by first distinguishing singly (z = 1) and doubly (z = 2) charged clusters, and then identifying monomers, dimers, … n-mers, etc., from their ordering in the mobility spectrum. Provided that d m > 1.3 nm, data of the form d m vs. [z(1+m g /m) 1/2 /Z)] 1/2 fall in a single curve for nanodrops of ionic liquids (ILs) for which ρ is known (m g is the mass of the molecules of suspending gas). Using an effective particle diameter d p = d m + d g and a gas molecule diameter d g = 0.300 nm, this curve is also in excellent agreement with the Stokes-Millikan law for spheres. Particles of solid materials fit similarly well the same Stokes-Millikan law when their (unknown) bulk density is assigned appropriately.


Journal of Occupational and Environmental Hygiene | 2008

Relationships Among Particle Number, Surface Area, and Respirable Mass Concentrations in Automotive Engine Manufacturing

William A. Heitbrink; Douglas E. Evans; Bon Ki Ku; Andrew D. Maynard; Thomas J. Slavin; Thomas M. Peters

This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R 2 = 0.6 for both plants) than in the summer (R 2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 μ m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.


Nanotechnology | 2006

In situ structure characterization of airborne carbon nanofibres by a tandem mobility–mass analysis

Bon Ki Ku; Mark S. Emery; Andrew D. Maynard; Mark R. Stolzenburg; Peter H. McMurry

Carbon nanofibres aerosolized by the agitation of as-produced commercial powder have been characterized in situ by using the differential mobility analyser-aerosol particle mass analyser (DMA-APM) method to determine their structural properties such as the effective density and fractal dimension for toxicology study. The effective density of the aerosolized carbon nanofibres decreased from 1.2 to 0.4 g cm(-3) as the mobility diameters increased from 100 to 700 nm, indicating that the carbon nanofibres had open structures with an overall void that increased with increasing diameter, due to increased agglomeration of the nanofibres. This was confirmed by transmission electron microscopy (TEM) observation, showing that 100 nm mobility diameter nanofibres were predominantly single fibres, while doubly or triply attached fibres were seen at mobility diameters of 200 and 400 nm. Effective densities calculated using Coxs theory were in reasonable agreement with experimental values. The mass fractal dimension of the carbon nanofibres was found to be 2.38 over the size range measured and higher than that of single-walled carbon nanotubes (SWCNTs), suggesting that the carbon nanofibres have more compact structure than SWCNTs.


Aerosol Science and Technology | 2013

Characterization of a Vortex Shaking Method for Aerosolizing Fibers

Bon Ki Ku; Gregory J. Deye; Leonid A. Turkevich

Generation of well-dispersed, well-characterized fibers is important in toxicology studies. A vortex-tube shaking method is investigated using glass fibers to characterize the generated aerosol. Controlling parameters that were studied included initial batch amounts of glass fibers, preparation of the powder (e.g., preshaking), humidity, and airflow rate. Total fiber number concentrations and aerodynamic size distributions were typically measured. The aerosol concentration is only stable for short times (t < 10 min) and then falls precipitously, with concomitant changes in the aerosol aerodynamic size distribution; the plateau concentration and its duration both increase with batch size. Preshaking enhances the initial aerosol concentration and enables the aerosolization of longer fibers. Higher humidity strongly affects the particle size distribution and the number concentration, resulting in a smaller modal diameter and a higher number concentration. Running the vortex shaker at higher flow rates (Q > 0.3 lpm), yields an aerosol with a particle size distribution representative of the batch powder; running the vortex shaker at a lower aerosol flow rate (Q ∼ 0.1 lpm) only aerosolizes the shorter fibers. These results have implications for the use of the vortex shaker as a standard aerosol generator. Copyright 2013 American Association for Aerosol Research


Aerosol Science and Technology | 2012

Particle Collection Efficiency for Nylon Mesh Screens.

Lorenzo G. Cena; Bon Ki Ku; Thomas M. Peters

Nylon mesh screens, unlike metal screens, are attractive as a collection substrate for nanoparticles because they can be digested or ashed prior to chemical analysis. A theoretical single-fiber efficiency expression developed for wire-mesh screens was evaluated for estimating the collection efficiency of 11–300 nm particles for nylon mesh screens. Pressure drop across the screens, the effect of particle morphology (spherical and highly fractal-like) on collection efficiency, and single-fiber efficiency were evaluated experimentally for three pore sizes (60, 100, and 180 μm) at three flow rates (2.5, 4, and 6 Lpm). The pressure drop across the screens was found to increase linearly with superficial velocity. The collection efficiency of the screens was found to vary by less than 4% regardless of particle morphology. Single-fiber efficiency calculated from experimental data was in good agreement with that estimated from theory for particles between 40 and 150 nm but deviated from theory for particles outside this size range. New coefficients for the single-fiber efficiency model were identified that minimized the sum of square error (SSE) between the values estimated with the model and those determined experimentally. Compared to the original theory, the SSE calculated using the modified theory was at least one order of magnitude lower for all screens and flow rates with the exception of the 60-μm pore screens at 2.5 Lpm, where the decrease was threefold. Copyright 2012 American Association for Aerosol Research


Inhalation Toxicology | 2014

Efficacy of screens in removing long fibers from an aerosol stream – sample preparation technique for toxicology studies

Bon Ki Ku; Gregory J. Deye; Leonid A. Turkevich

Abstract Fiber dimension (especially length) and biopersistence are thought to be important variables in determining the pathogenicity of asbestos and other elongate mineral particles. In order to prepare samples of fibers for toxicology studies, it is necessary to develop and evaluate methods for separating fibers by length in the micrometer size range. In this study, we have filtered an aerosol of fibers through nylon screens to investigate whether such screens can efficiently remove the long fibers (L >20 µm, a typical macrophage size) from the aerosol stream. Such a sample, deficient in long fibers, could then be used as the control in a toxicology study to investigate the role of length. A well-dispersed aerosol of glass fibers (a surrogate for asbestos) was generated by vortex shaking a Japan Fibrous Material Research Association (JFMRA) glass fiber powder. Fibers were collected on a mixed cellulose ester (MCE) filter, imaged with phase contrast microscopy (PCM) and lengths were measured. Length distributions of the fibers that penetrated through various screens (10, 20 and 60 µm mesh sizes) were analyzed; additional study was made of fibers that penetrated through double screen and centrally blocked screen configurations. Single screens were not particularly efficient in removing the long fibers; however, the alternative configurations, especially the centrally blocked screen configuration, yielded samples substantially free of the long fibers.


Aerosol Science and Technology | 2012

Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect.

Bon Ki Ku; Douglas E. Evans

For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynards estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynards estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynards estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynards estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynards estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles.


Journal of Occupational and Environmental Hygiene | 2016

Deposition of graphene nanomaterial aerosols in human upper airways

Wei-Chung Su; Bon Ki Ku; Pramod Kulkarni; Yung Sung Cheng

ABSTRACT Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced.


Annals of Occupational Hygiene | 2014

Evaluation of a Diffusion Charger for Measuring Aerosols in a Workplace

Donna J. H. Vosburgh; Bon Ki Ku; Thomas M. Peters

The model DC2000CE diffusion charger from EcoChem Analytics (League City, TX, USA) has the potential to be of considerable use to measure airborne surface area concentrations of nanoparticles in the workplace. The detection efficiency of the DC2000CE to reference instruments was determined with monodispersed spherical particles from 54 to 565.7 nm. Surface area concentrations measured by a DC2000CE were then compared to measured and detection efficiency adjusted reference surface area concentrations for polydispersed aerosols (propylene torch exhaust, incense, diesel exhaust, and Arizona road dust) over a range of particle sizes that may be encountered in a workplace. The ratio of surface area concentrations measured by the DC2000CE to that measured with the reference instruments for unimodal and multimodal aerosols ranged from 0.02 to 0.52. The ratios for detection efficiency adjusted unimodal and multimodal surface area concentrations were closer to unity (0.93-1.19) for aerosols where the majority of the surface area was within the size range of particles used to create the correction. A detection efficiency that includes the entire size range of the DC2000CE is needed before a calibration correction for the DC2000CE can be created. For diesel exhaust, the DC2000CE retained a linear response compared to reference instruments up to 2500 mm(2) m(-3), which was greater than the maximum range stated by the manufacturer (1000 mm(2) m(-3)). Physical limitations with regard to DC2000CE orientation, movement, and vibration were identified. Vibrating the DC2000CE while measuring aerosol concentrations may cause an increase of ~35 mm(2) m(-3), whereas moving the DC2000CE may cause concentrations to be inflated by as much as 400 mm(2) m(-3). Depending on the concentration of the aerosol of interest being measured, moving or vibrating a DC2000CE while measuring the aerosol should be avoided.

Collaboration


Dive into the Bon Ki Ku's collaboration.

Top Co-Authors

Avatar

Gregory J. Deye

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Pramod Kulkarni

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas E. Evans

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Leonid A. Turkevich

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Paul A. Baron

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin H. Dunn

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

M. Eileen Birch

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge