Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas E. Evans is active.

Publication


Featured researches published by Douglas E. Evans.


Journal of Occupational and Environmental Hygiene | 2007

Identification and Characterization of Potential Sources of Worker Exposure to Carbon Nanofibers During Polymer Composite Laboratory Operations

Lawrence F. Mazzuckelli; Mark M. Methner; M. Eileen Birch; Douglas E. Evans; Bon-Ki Ku; Keith G. Crouch; Mark D. Hoover

T he National Institute for Occupational Safety and Health (NIOSH) received a request to conduct a health hazard evaluation (HHE) at a university-based research laboratory using carbon nanofibers (CNFs) to produce high-performance polymer composite materials. Though no health complaints had been reported, the laboratory management sought NIOSH assistance to assess potential CNF exposures. To address management and worker concerns, NIOSH investigators conducted air and surface sampling for CNFs during various material handling and processing operations within the laboratory. There is limited published information on the potential adverse health effects of engineered nanomaterials(1) (human-made material possessing at least one size dimension between approximately 1 to 100 nanometers), but some materials do pose reasons for concern.(2) There are currently no occupational exposure limits governing workplace exposure to engineered nanomaterials. For these reasons, nanomaterials present new challenges to understanding, predicting, and managing potential health risks to workers.(1) In addition, uncertainties concerning exposure risk may be great because the nanomaterial characteristics may be quite different from those of larger particles with the same chemical composition. The most likely route of exposure to engineered nanomaterials is through inhalation; however, ingestion or dermal penetration may also occur.(3−6) The goal of this study was to examine various operations involved in the handling or processing of CNF materials and to determine whether emission of these materials occurred. Potential sources were identified on a process-by-process basis during a walk-through survey of the laboratory. Based on initial observations, the following specific processes were identified for further evaluation:


Annals of Occupational Hygiene | 2010

Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.

Douglas E. Evans; Bon Ki Ku; M. Eileen Birch; Kevin H. Dunn

Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations were described for processes as required.


Annals of Occupational Hygiene | 2013

Occupational Exposure Assessment in Carbon Nanotube and Nanofiber Primary and Secondary Manufacturers: Mobile Direct-Reading Sampling

Matthew M. Dahm; Douglas E. Evans; Mary K. Schubauer-Berigan; M. Eileen Birch; James A. Deddens

UNLABELLED RESEARCH SIGNIFICANCE: Toxicological evidence suggests the potential for a wide range of health effects from exposure to carbon nanotubes (CNTs) and carbon nanofibers (CNFs). To date, there has been much focus on the use of direct-reading instruments (DRIs) to assess multiple airborne exposure metrics for potential exposures to CNTs and CNFs due to their ease of use and ability to provide instantaneous results. Still, uncertainty exists in the usefulness and interpretation of the data. To address this gap, air-monitoring was conducted at six sites identified as CNT and CNF manufacturers or users and results were compared with filter-based metrics. METHODS Particle number, respirable mass, and active surface area concentrations were monitored with a condensation particle counter, a photometer, and a diffusion charger, respectively. The instruments were placed on a mobile cart and used as area monitors in parallel with filter-based elemental carbon (EC) and electron microscopy samples. Repeat samples were collected on consecutive days, when possible, during the same processes. All instruments in this study are portable and routinely used for industrial hygiene sampling. RESULTS Differences were not observed among the various sampled processes compared with concurrent indoor or outdoor background samples while examining the different DRI exposure metrics. Such data were also inconsistent with results for filter-based samples collected concurrently at the same sites [Dahm MM, Evans DE, Schubauer-Berigan MK et al. (2012) Occupational exposure assessment in CNT and nanofiber primary and secondary manufacturers. Ann Occup Hyg; 56: 542-56]. Significant variability was seen between these processes as well as the indoor and outdoor backgrounds. However, no clear pattern emerged linking the DRI results to the EC or the microscopy data (CNT and CNF structure counts). CONCLUSIONS Overall, no consistent trends were seen among similar processes at the various sites. The DRI instruments employed were limited in their usefulness in assessing and quantifying potential exposures at the sampled sites but were helpful for hypothesis generation, control technology evaluations, and other air quality issues. The DRIs employed are nonspecific, aerosol monitors, and, therefore, subject to interferences. As such, it is necessary to collect samples for analysis by more selective, time-integrated, laboratory-based methods to confirm and quantify exposures.


Particle and Fibre Toxicology | 2013

Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology

Aaron Erdely; Matthew M. Dahm; Bean T. Chen; Patti C. Zeidler-Erdely; Joseph E. Fernback; M. Eileen Birch; Douglas E. Evans; Michael L. Kashon; James A. Deddens; Tracy Hulderman; Suzan Bilgesu; Lori Battelli; Diane Schwegler-Berry; Howard Leonard; Walter McKinney; David G. Frazer; James M. Antonini; Dale W. Porter; Vincent Castranova; Mary K. Schubauer-Berigan

BackgroundDosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice.ResultsUpon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 μg/m3 (geometric mean 4.21 μg/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 μg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose.ConclusionThese findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level.


Journal of Occupational and Environmental Hygiene | 2008

Relationships Among Particle Number, Surface Area, and Respirable Mass Concentrations in Automotive Engine Manufacturing

William A. Heitbrink; Douglas E. Evans; Bon Ki Ku; Andrew D. Maynard; Thomas J. Slavin; Thomas M. Peters

This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R 2 = 0.6 for both plants) than in the summer (R 2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 μ m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.


Annals of Occupational Hygiene | 2011

Exposure and emissions monitoring during carbon nanofiber production--Part I: elemental carbon and iron-soot aerosols.

M. Eileen Birch; Bon-Ki Ku; Douglas E. Evans; Toni A. Ruda-Eberenz

Production of carbon nanofibers and nanotubes (CNFs/CNTs) and their composite products is increasing globally. High volume production may increase the exposure risks for workers who handle these materials. Though health effects data for CNFs/CNTs are limited, some studies raise serious health concerns. Given the uncertainty about their potential hazards, there is an immediate need for toxicity data and field studies to assess exposure to CNFs/CNTs. An extensive study was conducted at a facility that manufactures and processes CNFs. Filter, sorbent, cascade impactor, bulk, and microscopy samples, combined with direct-reading instruments, provided complementary information on air contaminants. Samples were analyzed for organic carbon (OC) and elemental carbon (EC), metals, and polycyclic aromatic hydrocarbons (PAHs), with EC as a measure of CNFs. Transmission electron microscopy with energy-dispersive X-ray spectroscopy also was applied. Fine/ultrafine iron-rich soot, PAHs, and carbon monoxide were production byproducts. Direct-reading instrument results were reported previously [Evans DE et al. (Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 2010;54:514-31.)] Results for time-integrated samples are reported as companion papers in this Issue. OC and EC, metals, and microscopy results are reported here, in Part I, while results for PAHs are reported in Part II [Birch ME. (Exposure and Emissions Monitoring during Carbon Nanofiber Production-Part II: Polycyclic Aromatic Hydrocarbons. Ann. Occup. Hyg 2011; 55: 1037-47.)]. Respirable EC area concentrations inside the facility were about 6-68 times higher than outdoors, while personal breathing zone samples were up to 170 times higher.


Journal of Occupational and Environmental Hygiene | 2011

A Strategy for Assessing Workplace Exposures to Nanomaterials

Michele L. Ostraat; Douglas E. Evans; Mark M. Methner; Patrick T. O’Shaughnessy; James D’Arcy; Charles L. Geraci; Edward Stevenson; Andrew D. Maynard; Keith Rickabaugh

This article describes a highly tailorable exposure assessment strategy for nanomaterials that enables effective and efficient exposure management (i.e., a strategy that can identify jobs or tasks that have clearly unacceptable exposures), while simultaneously requiring only a modest level of resources to conduct. The strategy is based on strategy general framework from AIHA® that is adapted for nanomaterials and seeks to ensure that the risks to workers handling nanomaterials are being managed properly. The strategy relies on a general framework as the basic foundation while building and elaborating on elements essential to an effective and efficient strategy to arrive at decisions based on collecting and interpreting available information. This article provides useful guidance on conducting workplace characterization; understanding exposure potential to nanomaterials; accounting methods for background aerosols; constructing SEGs; and selecting appropriate instrumentation for monitoring, providing appropriate choice of exposure limits, and describing criteria by which exposure management decisions should be made. The article is intended to be a practical guide for industrial hygienists for managing engineered nanomaterial risks in their workplaces.


Annals of Occupational Hygiene | 2013

Dustiness of Fine and Nanoscale Powders

Douglas E. Evans; Leonid A. Turkevich; Cynthia T. Roettgers; Gregory J. Deye; Paul A. Baron

Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace.


Annals of Occupational Hygiene | 2015

Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits

Matthew M. Dahm; Mary K. Schubauer-Berigan; Douglas E. Evans; M. Eileen Birch; Joseph E. Fernback; James A. Deddens

Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P < 0.0001). Overall, EC PBZ and area TWA samples were below the NIOSH REL (96% were <1 μg m(-3) at the respirable size fraction), while 30% of the inhalable PBZ EC samples were found to be >1 μg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF materials by monitoring EC at both the respirable and inhalable size fractions. Concurrent TEM samples should be collected to confirm the presence of CNT and CNF.


Journal of Occupational and Environmental Hygiene | 2007

Characterization and Mapping of Very Fine Particles in an Engine Machining and Assembly Facility

William A. Heitbrink; Douglas E. Evans; Thomas M. Peters; Thomas J. Slavin

Very fine particle number and mass concentrations were mapped in an engine machining and assembly facility in the winter and summer. A condensation particle counter (CPC) was used to measure particle number concentrations in the 0.01 μ m to 1 μ m range, and an optical particle counter (OPC) was used to measure particle number concentrations in 15 channels between 0.3 μ m and 20 μ m. The OPC measurements were used to estimate the respirable mass concentration. Very fine particle number concentrations were estimated by subtracting the OPC particle number concentrations from 0.3 μ m to 1 μ m from the CPC number concentrations. At specific locations during the summer visit, an electrical low pressure impactor was used to measure particle size distribution from 0.07 μ m to 10 μ m in 12 channels. The geometric mean ratio of respirable mass concentration estimated from the OPC to the gravimetrically measured mass concentration was 0.66 with a geometric standard deviation of 1.5. Very fine particle number concentrations in winter were substantially greater where direct-fire natural gas heaters were operated (7.5 × 105 particles/cm3) than where steam was used for heat (3 × 105 particles/cm3). During summer when heaters were off, the very fine particle number concentrations were below 105 particles/cm3, regardless of location. Elevated very fine particle number concentrations were associated with machining operations with poor enclosures. Whereas respirable mass concentrations did not vary noticeably with season, they were greater in areas with poorly fitting enclosures (0.12 mg/m3) than in areas where state-of-the-art enclosures were used (0.03 mg/m3). These differences were attributed to metalworking fluid mist that escaped from poorly fitting enclosures. Particles generated from direct-fire natural gas heater operation were very small, with a number size distribution modal diameter of less than 0.023 μ m. Aerosols generated by machining operations had number size distributions modes in the 0.023 μ m to 0.1 μ m range. However, multiple modes in the mass size distributions estimated from OPC measurements occurred in the 2–20 μ m range. Although elevated, very fine particle concentrations and respirable mass concentrations were both associated with poorly enclosed machining operations; the operation of the direct-fire natural gas heaters resulted in the greatest very fine particle concentrations without elevating the respirable mass concentration. These results suggest that respirable mass concentration may not be an adequate indicator for very fine particle exposure.

Collaboration


Dive into the Douglas E. Evans's collaboration.

Top Co-Authors

Avatar

M. Eileen Birch

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Mary K. Schubauer-Berigan

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Matthew M. Dahm

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Fernback

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Robert R. Mercer

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Aaron Erdely

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Bertke

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bon Ki Ku

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

John D. Beard

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge