Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bonglee Kim is active.

Publication


Featured researches published by Bonglee Kim.


Molecular Nutrition & Food Research | 2014

Molecular targets of isothiocyanates in cancer: Recent advances

Parul Gupta; Bonglee Kim; Sung-Hoon Kim; Sanjay K. Srivastava

Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant signaling pathways that lead to uninhibited cell division and growth. Various recent epidemiological studies have indicated that consumption of cruciferous vegetables, such as garden cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITCs) have been identified as major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anticancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of preclinical studies, few ITCs have advanced to the clinical phase. Available data from preclinical as well as available clinical studies suggest ITCs to be one of the promising anticancer agents available from natural sources. This is an up-to-date exhaustive review on the preventive and therapeutic effects of ITCs in cancer.


Journal of Pineal Research | 2012

Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells

Ji-Hyun Kim; Soo-Jin Jeong; Bonglee Kim; Sun-Mi Yun; Do Young Choi; Sung-Hoon Kim

Abstract:  To evaluate melatonin’s ability to enhance ovarian cancer cells to cisplatin treatment for ovarian cancer, this study was performed. Melatonin by itself had no significant cytotoxicity against SK‐OV‐3 cells, while cisplatin suppressed the cell viability in a dose‐dependent manner. Combined treatment with cisplatin and melatonin synergistically inhibited the viability of SK‐OV‐3 cells with the synergism between two drugs (1 > combination index). In contrast, melatonin revealed the protective effect against cisplatin‐induced cytotoxicity in OSEN normal ovarian epithelial cells. Cotreatment with cisplatin and melatonin increased the sub‐G1 DNA contents and TdT‐mediated dUTP nick end‐labeling (TUNEL)‐positive cells compared with cisplatin control in SK‐OV‐3 cells, suggesting that melatonin augments cisplatin‐induced apoptosis. Consistently, combined treatment of cisplatin and melatonin increased the cleavage of caspase‐3 and poly‐(ADP‐ribose) polymerase (PARP). Importantly, melatonin synergistically inhibited the phosphorylation of extracellular signal–regulated kinase (ERK) along with dephosphorylation of 90‐kDa ribosomal S6 kinase (p90RSK) and heat shock protein 27 (HSP27) induced by cisplatin. Furthermore, melatonin remarkably blocked the expression and colocalization of p90RSK and HSP27 by combination treatment with cisplatin. Taken together, our findings demonstrate that melatonin enhances cisplatin‐induced apoptosis via the inactivation of ERK/p90RSK/HSP27 cascade in SK‐OV‐3 cells as a potent synergist to cisplatin treatment.


Journal of Agricultural and Food Chemistry | 2012

Brazilin Induces Apoptosis and G2/M Arrest via Inactivation of Histone Deacetylase in Multiple Myeloma U266 Cells

Bonglee Kim; Sun-Hee Kim; Soo-Jin Jeong; Eun Jung Sohn; Ji Hoon Jung; Min-Ho Lee; Sung-Hoon Kim

Although brazilin [7,11b-dihydrobenz(b)indeno[1,2-d]pyran-3,6a,9,10(6H)-tetrol] isolated from Caesalpinia sappan was known to have various biological activities, including anti-inflammation, antibacteria, and antiplatelet aggregation, there is no report yet on its anticancer activity. In the present study, the anticancer mechanism of brazilin was elucidated in human multiple myeloma U266 cells. We found that brazilin significantly inhibited the activity of histone deacetylases (HDACs), transcription factors involved in the regulation of apoptosis and cell cycle arrest in U266 cells. Consistently, brazilin enhanced acetylation of histone H3 at Lys 23, indicating activation of histone acetyltransferase (HAT), and also suppressed the expressions of HDAC1 and HDAC2 at both protein and mRNA levels. Additionally, brazilin significantly increased the number of sub-G1 cell population and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells undergoing apoptosis and also activated caspase-3 and regulated the expression of Bcl-2 family proteins, including Bax, Bcl-x(L), and Bcl-2 in U266 cells, indicating that brazilin induces apoptosis through the mitochondria-dependent pathway. Interestingly, cell cycle analysis revealed that brazilin induced G2/M phase arrest along with apoptosis induction. Consistently, brazilin attenuated the expression of cyclin-dependent kinases (CDKs), such as cyclin D1, cyclin B1, and cyclin E, and also activated p21 and p27 in U266 cells. Furthermore, HAT inhibitor anacardic acid reversed activation of acetyl-histone H3 and cleavage of PARP induced by brazilin, while pan-caspase inhibitor Z-VAD-FMK001 did not affect the expression of HDAC induced by brazilin that brazilin mediates apoptosis via inactivation of HDAC in U266 cells. Notably, brazilin significantly potentiated the cytotoxic effect of standard chemotherapeutic agents, such as bortezomib or doxorubicin, in U266 cells. When our findings are taken together, they suggest that brazilin has potential as a chemotherapeutic agent alone or in combination with an anticancer agent for multiple myeloma treatment.


Phytotherapy Research | 2014

Tanshinone IIA Induces Autophagic Cell Death via Activation of AMPK and ERK and Inhibition of mTOR and p70 S6K in KBM-5 Leukemia Cells

Sun-Mi Yun; Ji Hoon Jung; Soo-Jin Jeong; Eun Jung Sohn; Bonglee Kim; Sung-Hoon Kim

Although tanshinone IIA (Tan IIA) from Salviae miltiorrhizae was known to induce apoptosis in various cancers, its underlying mechanism of autophagic cell death was not reported yet. Thus, in the present study, the molecular mechanism of autophagic cell death by Tan IIA was investigated in KBM‐5 leukemia cells. Tan IIA significantly increased the expression of microtubule‐associated protein light chain 3 (LC3) II as a hallmark of autophagy in western blotting and immunofluorescence staining. Tan IIA augmented the phosphorylation of adenosine monophosphate‐activated protein kinase (AMPK) and attenuated the phosphorylation of mammalian target of rapamycin (mTOR) and p70 S6K in a dose‐dependent manner. Conversely, autophagy inhibitor 3‐methyladenine partly reversed the cytotoxicity and the phosphorylation of AMPK, mTOR and p70 S6K induced by Tan IIA in KBM‐5 leukemia cells. In addition, Tan IIA dramatically activated the extracellular signal regulated kinase (ERK) signaling pathway including Raf, ERK and p90 RSK in a dose‐dependent and time‐dependent manner. Consistently, ERK inhibitor PD184352 suppressed LC3‐II activation induced by Tan IIA, whereas PD184352 and PD98059 did not affect poly (ADP‐ribose) polymerase cleavage and sub‐G1 accumulation induced by Tan IIA in KBM‐5 leukemia cells. Furthermore, Tan IIA could induce autophagy via LC3‐II activation in various cancer cells such as prostate (PC‐3), multiple myeloma (U266), lung (NCI‐H460), and breast (MDA‐MB‐231) cells. Overall, these findings suggest that Tan IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM‐5 cells as a potent natural compound for leukemia treatment. Copyright


Journal of Ethnopharmacology | 2011

Are there new therapeutic options for treating lung cancer based on herbal medicines and their metabolites

Soo-Jin Jeong; Wonil Koh; Bonglee Kim; Sung-Hoon Kim

UNLABELLED ETHONOPHARMACOLOGICAL RELEVANCE: Lung cancer is one of the most lethal cancers in terms of mortality and incidence worldwide. Despite intensive research and investigation, treatment of lung cancer is still unsatisfactory due to adverse effects and multidrug resistance. Recently, herbal drugs have been recognized as one of attractive approaches for lung cancer therapy with little side effects. Furthermore, there are evidences that various herbal medicines have proven to be useful and effective in sensitizing conventional agents, prolonging survival time, preventing side effects of chemotherapy, and improving quality of life (QoL) in lung cancer patients. AIM AND METHODS OF THE STUDY Nevertheless, the underlying molecular targets and efficacy of herbal medicines in lung cancer treatment still remain unclear. Thus, we reviewed traditionally used herbal medicines and their phytochemicals with antitumor activity against lung cancer from peer-reviewed papers through Scientific Database Medline, Scopus and Google scholar. CONCLUSIONS We suggest that herbal medicines and phytochemicals can be useful anti-cancer agents for lung cancer treatment by targeting molecular signaling involved in the regulation of angiogenesis, metastasis and severe side effects, only provided quality control and reproducibility issues were solved.


Stem Cell Research & Therapy | 2014

Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling

Ihn Han; Miyong Yun; E.-C. Kim; Bonglee Kim; Min-Hyung Jung; Sung-Hoon Kim

IntroductionAlthough mesenchymal stem cells (MSCs) have antitumor potential in hepatocellular carcinoma and breast cancer cells, the antitumor mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in prostate cancer cells still remains unclear. Thus, in the present study, we elucidated the antitumor activity of hUCMSCs in PC-3 prostate cancer cells in vitro and in vivo.MethodshUCMSCs were isolated from Wharton jelly of umbilical cord and characterized via induction of differentiations, osteogenesis, and adipogenesis. Antitumor effects of UCMSCs on tumor growth were evaluated in a co-culture condition with PC-3 prostate cancer cells. PC-3 cells were subcutaneously (sc) injected into the left flank of nude mice, and UCMSCs were sc injected into the right flank of the same mouse.ResultsWe found that hUCMSCs inhibited the proliferation of PC-3 cells in the co-culture condition. Furthermore, co-culture of hUCMSCs induced the cleavage of caspase 9/3 and PARP, activated c-jun NH2-terminal kinase (JNK), and Bax, and attenuated the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/ AKT, extracellular signal-regulated kinase (ERK), and the expression of survival genes such as Bcl-2, Bcl-xL, Survivin, Mcl-1, and cIAP-1 in PC-3 cells in Western blotting assay. Conversely, we found that treatment of specific JNK inhibitor SP600125 suppressed the cleavages of caspase 9/3 and PARP induced by hUCMSCs in PC-3 cells by Western blotting and immunofluorescence assay. The homing of hUCMSCs to, and TUNEL-positive cells on, the K562 xenograft tumor region were detected in Nu/nu-BALB/c mouse.ConclusionsThese results suggest that UCMSCs inhibit tumor growth and have the antitumor potential for PC-3 prostate cancer treatment.


Pharmacological Reports | 2013

Inhibition of Wnt/β-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells.

Ji-Hyuk Park; Hee-Young Kwon; Eun Jung Sohn; Kyung A. Kim; Bonglee Kim; Soo-Jin Jeong; Junho Song; Jin Suk Koo; Sung-Hoon Kim

BACKGROUND Ursolic acid, a pentacyclic triterpenoid, is known to exert antitumor activity in breast, lung, liver and colon cancers. Nonetheless, the underlying mechanism of ursolic acid in prostate cancer cells still remains unclear. To investigate the antitumor mechanism, the apoptotic mechanism of ursolic acid via Wnt/β-catenin signaling was examined in PC-3 prostate cancer cells. METHODS Cytotoxicity assay, flow cytometry, immunofluorescence assay and western blotting were performed. RESULTS Ursolic acid showed cytotoxicity against PC-3, LNCaP and DU145 prostate cancer cells with IC50 of 35 μM, 47 μM and 80 μM, respectively. Also, ursolic acid significantly increased the number of ethidium homodimer stained cells and apoptotic bodies, and dose-dependently enhanced the sub-G1 apoptotic accumulation in PC-3 cells. Consistently, western blotting revealed that ursolic acid effectively cleaved poly (ADP-ribose) polymerase (PARP), activated caspase-9 and -3, suppressed the expression of survival proteins such as Bcl-XL, Bcl-2 and Mcl-1, and upregulated the expression of Bax in PC-3 cells. Interestingly, ursolic acid suppressed the expression of Wnt5α/β and β-catenin, and enhanced the phosphorylation of glycogen synthase kinase 3 β (GSK3β). Furthermore, the GSK3β inhibitor SB216763 or Wnt3a-conditioned medium (Wnt3a-CM) reversed the cleavages of caspase-3 and PARP induced by ursolic acid in PC-3 cells. CONCLUSIONS Our findings suggest that ursolic acid induces apoptosis via inhibition of the Wnt5/β-catenin pathway and activation of caspase in PC-3 prostate cancer cells. These results support scientific evidence that medicinal plants containing ursolic acid can be applied to cancer prevention and treatment as a complement and alternative medicine (CAM) agent.


Evidence-based Complementary and Alternative Medicine | 2013

Melatonin Suppresses the Expression of 45S Preribosomal RNA and Upstream Binding Factor and Enhances the Antitumor Activity of Puromycin in MDA-MB-231 Breast Cancer Cells

Ji Hoon Jung; Eun Jung Sohn; Eun Ah Shin; Duckgue Lee; Bonglee Kim; Deok-Beom Jung; Ji-Hyun Kim; Miyong Yun; Hyo-Jeong Lee; Yong Koo Park; Sung-Hoon Kim

Since the dysregulation of ribosome biogenesis is closely associated with tumor progression, in the current study, the critical role of ribosome biogenesis related signaling was investigated in melatonin and/or puromycin induced apoptosis in MDA-MB-231 breast cancer cells. Despite its weak cytotoxicity, melatonin from 3 mM attenuated the expression of 45S pre-ribosomal RNA (pre-rRNA), UBF as a nucleolar transcription factor, and fibrillarin at mRNA level and consistently downregulated nucleolar proteins such as UBF and fibrillarin at protein level in MDA-MB-231 cells. Furthermore, immunofluorescence assay revealed that UBF was also degraded by melatonin in MDA-MB-231 cells. In contrast, melatonin attenuated the expression of survival genes such as Bcl-xL, Mcl-1, cyclinD1, and cyclin E, suppressed the phosphorylation of AKT, mTOR, and STAT3, and cleaved PARP and activated caspase 3 only at a high concentration of 12 mM. However, combined treatment of melatonin (3 mM) and puromycin (1 μM) synergistically inhibited viability, attenuated the expression of 45S pre-rRNA and UBF, and consistently downregulated UBF, XPO1 and IPO7, procaspase 3, and Bcl-xL in MDA-MB 231 cells. Overall, these findings suggest that melatonin can be a cancer preventive agent by combination with puromycin via the inhibition of 45S pre-rRNA and UBF in MDA-MB 231 breast cancer cells.


Bioorganic & Medicinal Chemistry Letters | 2014

Coumestrol suppresses hypoxia inducible factor 1α by inhibiting ROS mediated sphingosine kinase 1 in hypoxic PC-3 prostate cancer cells

Sung-Yun Cho; Sun-Mi Cho; Eun-Kyung Park; Bonglee Kim; Eun Jung Sohn; Bumsuk Oh; Eun-Ok Lee; Hyo-Jeong Lee; Sung-Hoon Kim

Among many signals to regulate hypoxia inducible factor 1α (HIF-1α), sphingosine kinase 1 (SPHK1) is also involved in various biological activities such as cell growth, survival, invasion, angiogenesis, and carcinogenesis. Thus, in the present study, molecular mechanisms of coumestrol were investigated on the SPHK1 and HIF-1α signaling pathway in hypoxic PC-3 prostate cancer cells. Coumestrol significantly suppressed SPHK1 activity and accumulation of HIF-1α in a time- and concentration-dependent manner in hypoxic PC-3 cells. In addition, coumestrol inhibited the phosphorylation status of AKT and glycogen synthase kinase-3β (GSK 3β) signaling involved in cancer metabolism. Furthermore, SPHK1 siRNA transfection, sphigosine kinase inhibitor (SKI), reactive oxygen species (ROS) enhanced the inhibitory effect of coumestrol on the accumulation of HIF-1α and the expression of pAKT and pGSK 3β in hypoxic PC-3 cells by combination index. Overall, our findings suggest that coumestrol suppresses the accumulation of HIF-1α via suppression of SPHK1 pathway in hypoxic PC-3 cells.


Evidence-based Complementary and Alternative Medicine | 2012

Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

Hyo-Jeong Lee; Deok-Beom Jung; Eun Jung Sohn; Hanna Hyun Kim; Moon Nyeo Park; Jaehwan Lew; Seok-Geun Lee; Bonglee Kim; Sung-Hoon Kim

Although cryptotanshinone (CT) was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent.

Collaboration


Dive into the Bonglee Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge